Skip to main content

Space Flight Effects on Lichen Ultrastructure and Physiology

Following the LICHENS 2005 Experiment On-Board the BIOPAN V Space Exposure Facility

  • Chapter
  • First Online:
Symbioses and Stress

Abstract

Growth, survival and metabolic activity of microorganisms are influenced by numerous abiotic environmental factors. Microorganisms, especially when living in association, show an enormous resistance and great capacity for adapting to extreme levels of these abiotic factors. No single terrestrial environment exists that is not inhabited by microorganisms. In contrast, the conditions outside our planet would be very hostile for all life forms known so far, owing to a vacuum, severely desiccating conditions, intense radiation and extreme temperatures (Nicholson et al., 2005). The survival of organisms in the conditions of space has generated much interest for two reasons: first, it is a good way to test the resistance of terrestrial life forms to highly stressful conditions, and second, it also tests the possibility of present, past or future life beyond the confines of the Earth. Two kinds of experiments can be designed to examine the survival of organisms exposed to space conditions: (a) ground experiments simulating the conditions of space or (b) actual space flight experiments. Although costly and much more difficult to design and execute, only space flight experiments can assess the synergetic effects of a lack of gravity and high cosmic radiation doses (Leys et al., 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascaso, C. (1978) Ultrastructural modifications in lichens induced by environmental humidity. Lichenologist 10: 209–219.

    Google Scholar 

  • Ascaso, C. and Galvan, J. (1976) The ultrastructure of the symbionts of Rhizocarpon geographicum, Parmelia conspersa and Umbilicaria pustulata growing under dryness conditions. Protoplasma 87: 409–418.

    Article  Google Scholar 

  • Balaguer, L., Manrique, E. and Ascaso, C. (1997) Predictability of the combined effects of sulphur dioxide and nitrate on the green-algal lichen Ramalina farinacea. Can. J. Bot. 75: 1836–1842.

    Article  CAS  Google Scholar 

  • Björn, L.O. (2007) Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol. Conserv. 135: 326–333.

    Article  Google Scholar 

  • Brown, D.H., Ascaso, C. and Rapsch, S. (1987) Ultrastructural changes in the pyrenoid of the lichen Parmelia sulcata stored under controlled conditions. Protoplasma 136: 136–144.

    Article  Google Scholar 

  • Büdel, B. and Lange, O.L. (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Crypt. Bot. 4: 262–269.

    Google Scholar 

  • Buffoni Hall, R.S., Bornman, J.F. and Bjorn, L.O. (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J. Photochem Photobiol. 66: 13–20.

    Article  CAS  Google Scholar 

  • Buffoni Hall, R.S., Paulsson, M., Duncan, K., Tobin, A.K., Widell, S. and Bornman, J.F. (2003) Water- and temperature-dependence of DNA damage and repair in the fruticose lichen Cladonia arbuscula ssp. mitis exposed to UV-B radiation. Physiol. Plant 118: 371–379.

    Article  Google Scholar 

  • Cowan, D., Green, T. and Wilson, A. (1979) Lichen metabolism. I. The use of tritium labeled water in studies of anhydrobiotic metabolism in Ramalina Celastri and Peltigera polydactila. New Phytol. 82: 489–503.

    Article  CAS  Google Scholar 

  • De la Torre Noetzel, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M. and Horneck, G. (2007) BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verfication tests of the Rhizocarpon geographicum-granite ecosystem. Adv. Space Res. 40: 1665–1671.

    Article  Google Scholar 

  • De los Ríos, A., Wierzchos, J., Sancho, L.G., Green, A. and Ascaso, C. (2005) Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist 37: 383–395.

    Article  Google Scholar 

  • De los Ríos, A., Wiezchos, J., Sancho, L.G. and Ascaso, C. (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol. Ecol. 50: 143–152.

    Article  PubMed  Google Scholar 

  • de Vera, J.P., Horneck, G., Rettberg, P. and Ott, S. (2003) The potential of the lichen symbiosis to cope with extreme conditions of outer space-I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int. J. Astrobiol. 1: 285–293.

    Article  Google Scholar 

  • de Vera, J.-P., Horneck, G., Rettberg, P. and Ott, S. (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33: 1236–1243.

    Article  PubMed  Google Scholar 

  • Demmig-Adams, B., Maguas, C., Adams, W., Meyer, A. and Kilian, E. (1990) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green photobionts. Planta 180: 400–409.

    Article  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W and Scherer, S. (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940–1945.

    PubMed  CAS  Google Scholar 

  • Gabara, B., Sklodowska, M., Wyrwicka, A., Glinska, S. and Gapinska, M. (2003) Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain. Plant Sci. 164: 507–516.

    Article  CAS  Google Scholar 

  • Gauslaa, Y. (1984) Heat resistance and energy budget in different Scandinavian plants. Holarctic Ecol. 7: 1–78.

    Google Scholar 

  • Gauslaa, Y. and Solhaug, K.A. (2004) Photoinhibition in lichens depends on cortical characteristics and hydration. Lichenologist 36: 133–143.

    Article  Google Scholar 

  • Gauslaa, Y. and Solhaug, K.A. (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria-interactions of irradiance, exposure duration and high temperature. J. Exp. Bot. 50: 697–705.

    CAS  Google Scholar 

  • Gauslaa, Y. and Solhaug, K.A. (1996) Differences in the susceptibility to light stress between epiphytic of ancient and young boreal forest. Funct. Ecol. 10: 344–354.

    Article  Google Scholar 

  • Heber, U., Azarkovich, M. and Shuvalov, V. (2007) Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. J Exp. Bot. 58: 2745–2759.

    Article  PubMed  CAS  Google Scholar 

  • Herber, U., Lange, O.L. and Shulavov, V.A. (2006) Conservation and dissipation of light energy as complementary process: homoiohydric and poikilohydric autotrophs. J. Exp. Bot. 57: 1211–1223.

    Article  Google Scholar 

  • Holzinger, A. and Lutz, C. (2006) Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron. 37: 190–207.

    Article  PubMed  Google Scholar 

  • Holzinger, A., Lutz, C., Karsten, U. and Wiencke, C. (2004) The effect of ultraviolet radiation on ultrastructure and photosynthesis in the red macroalgae Palmaria palmata and Odonthalia dentata from arctic waters. Plant Biol. 6: 568–577.

    Article  PubMed  CAS  Google Scholar 

  • Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Origins Life Evol. Biospheres 23: 37–52.

    Article  CAS  Google Scholar 

  • Horneck, G., Bucker, H. and Reitz, G. (1994) Long-term survival of bacterial spores in space. Adv. Space Res. 14: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Horneck, G., Bucker, H., Reitz, G., Requardt, H., Dose, K., Martens, K.D., Mennigmann, H.D. and Weber, P. (1984) Microorganisms in the space environment. Science 225: 226–228.

    Article  PubMed  CAS  Google Scholar 

  • Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. and Baumstark-Khan, C. (2001) Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Origins Life Evol. Biospheres 31: 527–547.

    Article  CAS  Google Scholar 

  • Jacobs, J.B. and Ahmadjiam, V. (1971) The ultrastructure of lichens. II. Cladonia cristatella, the lichen and its isolated symbionts. J. Phycol. 7: 71–82.

    Google Scholar 

  • Karsten, U., Karsten, U., Lembcke, S. and Schumann, R. (2007) The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta 225: 991–1000.

    Article  PubMed  CAS  Google Scholar 

  • Kordyum, E.L. (1994) Effects of altered gravity on plant cell processes: results of recent space and clinostatic experiments. Adv Space Res. 14: 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. and Pfeifhofer, H.W. (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. 102: 3141–3146.

    Article  PubMed  CAS  Google Scholar 

  • Lange, O.L., Bilger, W., Rinke, S. and Schreiber, U. (1989) Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor and by addition of liquid water. Bot. Acta 102: 306–313.

    Google Scholar 

  • Leys, N., Hendrickx, L., Boever, P., Baatout, S. and Mergeay, M. (2004) Space flight effects on bacterial physiology. J. Biol. Reg. Homeostatic Agents 18: 193–199.

    CAS  Google Scholar 

  • Lütz, C., Seidlitz, H.K. and Meindl, U. (1997) Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulata induced by UV-B simulation. Plant Ecol. 128: 54–64.

    Article  Google Scholar 

  • Mancinelli, R.L. and Klovstad, M. (2000) Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planetary Space Sci. 48: 1093–1097.

    Article  Google Scholar 

  • Mancinelli, R.L., White, M.R. and Rothschild, L.J. (1998) Biopan-survival I: Exposure of the osmophiles Synechococcus sp. (Nageli) and Haloarcula sp. to the space environment. Adv. Space Res. 22: 327–334.

    Article  CAS  Google Scholar 

  • Nicholson, W.L., Schuerger, A.C. and Setlow, P. (2005) The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Res. 571: 249–264.

    Article  PubMed  CAS  Google Scholar 

  • Peveling, E. and Galun, M. (1976) Electron microscopical studies on the phycobiont Coccomyxa Schmidle. New Phytol. 77: 713–718.

    Article  Google Scholar 

  • Popova, A.F. (2003) Comparative characteristic of mitochondria ultrastructural organization in ­Chlorella cells under altered gravity conditions. Adv. Space Res. 31: 2253–2259.

    Article  PubMed  CAS  Google Scholar 

  • Poppe, F., Hanelt, D. and Wienke, C. (2002) Changes in Ultrastructure, photosynthetic activity and pigments in the Antarctic Red Alga Palmaria decipiens during acclimation to UV radiation. Bot. Marina 45: 253–261.

    Article  CAS  Google Scholar 

  • Provorov, N.A. and Dolgikh, E.A. (2006) Metabolic integration of organisms with symbiotic systems. Zhurnal Obschei Biologii 67: 403–422.

    CAS  Google Scholar 

  • Quaggiotti, S., Trentin, A.R., Dalla Vecchia, F. and Ghisi, R. (2004) Response of maize (Zea mays L.) nitrate reductase to UV-B radiation. Plant Sci. 167: 107–116.

    Article  CAS  Google Scholar 

  • Remias, D., Lütz-Meindl, U. and Lütz, C. (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40: 259–268.

    Article  CAS  Google Scholar 

  • Rettberg, P., Eschweiler, U., Strauch, K., Reitz, G., Horneck, G., Wanke, H., Brack, A. and Barbier, B. (2002) Survival of microorganisms in space protected by meteorite material: Results of the experiment EXOBIOLOGIE of the PERSEUS mission. Adv. Space Res. 30: 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild, L.J. and Mancinelli, R.L. (2001) Life in extreme environments. Nature 409: 1092.

    Article  PubMed  CAS  Google Scholar 

  • Sancho, L.G., De la Torre, R., Horneck, G., Ascaso, C., De los Rios, A., Pintado, A., Wierzchos, J. and Schuster, M. (2007) Lichens survive in Space: Results from the 2005 LICHENS experiment. Astrobiology 7: 443–454.

    Article  PubMed  Google Scholar 

  • Schatten, H., Lewis, M.L. and Chakrabarti, A. (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronautica 49: 399–418.

    Article  PubMed  CAS  Google Scholar 

  • Solhaug, K.A., Gauslaa, Y., Nybakken, L. and Bilger, W. (2003) UV–induction of sun-screening pigments in lichens. New Phytol. 158: 91–100.

    Article  CAS  Google Scholar 

  • Tarhanen, S. (1998) Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition. Ann. Bot. 82: 735–746.

    Article  CAS  Google Scholar 

  • Tarhanen, S., Poikolainen, J., Holopainen, T. and Oksanen, J. (2000) Severe photobiont injuries of lichens are strongly associated with air pollution. New Phytol. 147: 579–590.

    Article  CAS  Google Scholar 

  • Torres, A., Hochberg, M., Pergament, I., Smoum, R., Niddam, V., Dembitsky, V.M., Temina, M., Dor, I., Lev, O., Srebnik, M. and Enk, C.D. (2004) A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 271: 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Vrablikova, H., McEvoy, M., Solhaug, K.A., Bartak, M. and Gauslaa, Y. (2006) Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J. Photochem. Photobiol. 83: 151–162.

    Article  CAS  Google Scholar 

  • Wang, T., Bengtsson, G., Karnefelt, I. and Bjorn, L.O. (2001) Provitamins and vitamins D2 and D3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. J. Photochem. Photobiol. 62: 118–122.

    Article  CAS  Google Scholar 

  • Wi, S.G., Chung, B.Y., Kim, J.-S., Kim, J.-H., Baek, M.-H., Lee, J.-W. and Kim, Y.S. (2007) Effects of gamma irradiation on morphological changes and biological responses in plants. Micron 38: 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Wierzchos, J., De los Rios, A., Sancho, L.G. and Ascaso, C. (2004) Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J. Microscopy 216: 57–61.

    Article  CAS  Google Scholar 

  • Yu, J., Xuexi, T., Zhang, P., Tian, J. and Dong, S. (2005) Physiological and ultrastructural changes of Chlorella sp. induced by UV–B radiation. Progr. Nat. Sci. 15: 678–683.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank INTA and ESA for the logistic and ­technical support, the staff of the microscopy facility of the Centro de Ciencias Medioambientales for their technical assistance, and Ana Burton for revising the document for language. This study was supported by grants CGL2006-04658 and CTM2009-1238 C04 of the Education Spanish Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asunción De Los Ríos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Los Ríos, A., Ascaso, C., Wierzchos, J., Sancho, L.G. (2010). Space Flight Effects on Lichen Ultrastructure and Physiology. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_30

Download citation

Publish with us

Policies and ethics