Skip to main content

Physiological Responses to Stress in the Vibrionaceae

  • Chapter
  • First Online:
Symbioses and Stress

Abstract

The family Vibrionaceae (Domain Bacteria, Phylum Proteobacteria, Class Gammaproteobacteria) is comprised mostly of motile gram-negative chemoorganotrophs, possessing at least one polar flagellum (Farmer III and Janda, 2005; Thompson and Swings, 2006). Vibrios are facultative anaerobes, having both respiratory and fermentative metabolisms, and the mol% G + C of the DNA is 38–51% (Farmer III and Janda, 2005). Cells are usually 1 μm in width and 2–3 μm in length, and most are oxidase positive. The vast majority of vibrios require Na+ for growth and survival, usually 0.5–3% NaCl for optimum growth. Additionally, most species are susceptible to the vibriostatic agent 0/129 (Thompson and Swings, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, S.-H., Han, J.-H., Lee, J.-H., Park, K.-J. and Kong, I.-S. (2005) Identification of an iron-re­gulated hemin-binding outer membrane protein, hupo, in Vibrio fluvialis: effects on hemolytic activity and the oxidative stress response. Infect. Immun. 73: 722–729.

    Article  PubMed  CAS  Google Scholar 

  • Allaby, M. (2005) Oxford Dictionary of Ecology. Oxford University Press, Oxford, New York.

    Google Scholar 

  • Amaro, C., Biosca, E.G.; Fouz, B., Alcaide, E. and Esteve, C. (1995) Evidence that water transmits Vibrio vulnificus biotype 2 infections to eels. Appl. Environ. Microbiol. 61: 1133–1137.

    PubMed  CAS  Google Scholar 

  • Atlas, R.M. and Bartha, R. (1998) Ch. 9. Microorganisms in their natural habitats: air, water, and soil microbiology. pg. 322–384. Microbial Ecology: Fundamentals and Applications, 4th Ed. Benjamin/Cummings Science Publishing, Menlo Park, CA.

    Google Scholar 

  • Austin, B. (2006) Miscellaneous animal pathogens, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios ASM Press, Washington, D.C., pp. 297–308.

    Google Scholar 

  • Banin, E., Vassilakos, D., Orr, E., Martinez, R.J. and Rosenberg, E. (2003) Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr. Microbiol. 46: 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Barros, M.P. and Bechara, E.J. (1998) Bioluminescence as a possible auxiliary oxygen detoxifying mechanism in elaterid larvae. Free Radical Biol. Med. 24: 767–777.

    Article  CAS  Google Scholar 

  • Bartlett, D.H. (2006) Extremophilic Vibrionaceae, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 156–171.

    Google Scholar 

  • Bennett, A.F. (2002) Experimental Evolution: an overview, In: M. Pagel (ed.) Encyclopedia of Evo­lution, vol. 1. Oxford University Press, New York, pp. 339–342.

    Google Scholar 

  • Bennett, A.F. and Lenski, R.E. (1997) Phenotypic and evolutionary adaptation of a model bacterial system to stressful thermal environments, In: R. Bijlsma and V. Loeschcke (eds.) Environmental Stress, Adaptation, and Evolution. Birkhauser, Basel, pp. 135–154.

    Chapter  Google Scholar 

  • Bennett, A.F. and Lenski, R.E. (1999) Experimental evolution and its role in evolutionary physiology. Am. Zool. 39: 346–362.

    Google Scholar 

  • Bogosian, G. and Bourneuf, E.V. (2001) A matter of bacterial life and death. EMBO Reports 2: 770–774.

    Article  PubMed  CAS  Google Scholar 

  • Bordas, M.A., Balebona, M.C., Zorrilla, I., Borrego, J.J. and Morinigo, M.A. (1996) Kinetics of adhesion of selected fish-pathogenic Vibrio strains of skin mucus of gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 62: 3650–3654.

    PubMed  CAS  Google Scholar 

  • Bose, J.L.; Kim, U., Bartkowski, W., Gunsalus, R.P., Overley, A.M., Lyell, N.L., Visick, K.L. and Stabb, E.V. (2007) Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regul­ator ArcA. Mol. Microbiol. 65: 538–552.

    Article  PubMed  CAS  Google Scholar 

  • Boucher, Y. and Stokes, H.W. (2006) Ch. 7. The roles of lateral gene transfer and vertical descent in vibrio evolution, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 84–94.

    Google Scholar 

  • Bryan, P.J., Steffan, R.J., DePaola, A., Foster, J.W. and Bej, A.K. (1999) Adaptive response to cold temperatures in Vibrio vulnificus. Curr. Microbiol. 38: 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, R.R. (2000) Viable but nonculturable bacteria: a survival strategy. J. Infect. Chemother. 6: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, R.R. (2006) A global and historical perspective of the genus Vibrio. In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 3–11.

    Google Scholar 

  • Crosa, J.H., Actis, L.A. and Tolmasky, M.E.. (2006) The biology and pathogenicity of Vibrio anguillarum and Vibrio ordalii, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 251–265.

    Google Scholar 

  • Czyz, A., Plata, K. and Wegrzyn, G. (2003) Stimulation of DNA repair as an evolutionary drive for bacterial luminescence. Luminescence 18: 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Datta, P.P. and Bhadra, R.K. (2003) Cold shock response and major cold proteins of Vibrio cholerae. Appl. Environ. Microbiol. 69: 6361–6369.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, S.K., Koropatnick, T.A., Kossmehl R., Sycuro, L. and McFall-Ngai, M.J. (2004) NO means ‘yes’ in the squid-Vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell. Microbiol. 6: 1139–1151.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J.W. and Sizemore, R.K. (1982) Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl. Environ. Microbiol. 43: 1092–1097.

    PubMed  CAS  Google Scholar 

  • Douglas, A.E. (2002) Symbiosis, In: M. Pagel (ed). Encyclopedia of Evolution, Vol. 2. Oxford University Press, New York, pp. 1093–1099.

    Google Scholar 

  • Dunlap, P.V., Ast, J.C., Kimura, S., Fukui, A., Yoshino, T. and Endo, H. (2007) Phylogenetic analysis of host-symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23: 507–532.

    Article  Google Scholar 

  • Eilers, H., Pernthaler, J. and Amann, R. (2000) Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl. Environ. Microbiol. 66: 4634–4640.

    Article  PubMed  CAS  Google Scholar 

  • Ermolenko, D.N. and Makhatadze, G.I. (2002) Bacterial cold-shock proteins. Cell. Mol. Life Sci. 59: 1902–1913.

    Article  PubMed  CAS  Google Scholar 

  • Farmer III, J.J. and Janda, J.M. (2005) Vibrionaceae, In: D.J. Brenner, N.R. Krieg and J.R. Staley (eds.) Bergey’s Manual Systematic Bacteriology: The Proteobacteria, vol. 2. 2nd Ed. Springer-Verlag, New York, pp. 491–494.

    Google Scholar 

  • Farmer III, J.J., Janda, J.M., F.W. Brenner, D.N. Cameron and K.M. Birkhead. (2005) Vibrio, In: D.J. Brenner, N.R. Krieg and J.R. Staley (eds.) Bergey’s Manual Systematic Bacteriology: The Proteobacteria, vol. 2, 2nd Ed. Springer-Verlag, New York. pp. 494–546.

    Google Scholar 

  • Giovannoni, S. and Rappe M. (2000) Ch. 3. Evolution, diversity, and molecular ecology of marine prokaryotes, In: Microbial Ecology of the Oceans. Wiley-Liss, New York, pp. 47–84.

    Google Scholar 

  • Grimes, D.J., Brayton, P., Colwell, R.R. and Gruber, S.H.. (1985) Vibrios as autochthonous flora of neritic sharks. Syst. Appl. Microbiol. 43: 221–226.

    Article  Google Scholar 

  • Hilton, T., Rosche, T., Froelich, B., Smith, B. and Oliver, J. (2006) Capsular polysaccharide phase variation in Vibrio vulnificus. Appl. Environ. Microbiol. 72: 6986–6993.

    Article  PubMed  CAS  Google Scholar 

  • Huels, K.L., Brady, Y.J., Delaney, M.A. and Bader, J.A. (2003) Evidence of a cold shock response in Vibrio vulnificus, a human pathogen transmitted by via raw eastern oysters, Crassotrea virginica, from the Gulf of Mexico. J. Shellfish Res. 22: 336.

    Google Scholar 

  • Hulsmann, A., Roschle, T.M., Kong, I.-S., Hassan, H.M., Beam, D.M. and Oliver, J.D. (2003) RpoS-dependent stress response and exoenzyme production in Vibrio vulnificus. Appl.Environ. Microbiol. 69: 114–6120.

    Article  Google Scholar 

  • Jones, B.W., Maruyama, A., Ouverney, C.C., and Nishiguchi, M.K. (2007) Spatial and temporal distribution of the Vibrionaceae in coastal waters of Hawaii, Australia, and France. Microbial Ecol. 54: 314–323.

    Article  CAS  Google Scholar 

  • Jones, B.W., Lopez, J.E., Huttenberg, J., and Nishiguchi, M.K. (2006) Population structure between environmentally transmitted Vibrios and bobtail squids using nested clade analysis. Mol. Ecol. 15: 4317–4329.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B.W. and Nishiguchi, M.K. (2006) Vibrio fischeri transcripts reveal adaptations in an environmentally transmitted symbiosis. Can. J. Microbiol. 52: 1218–1227.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B.W. and Nishiguchi, M.K. (2004). Counterillumination in the bobtail squid, Euprymna scolopes (Mollusca: Cephalopoda). Mar. Biol. 144: 1151–1155.

    Article  Google Scholar 

  • Iida, T. and Kurokawa, K. (2006) Ch. 5. Comparative genomics: genome configuration and the driving forces in the evolution of vibrios, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 67–75.

    Google Scholar 

  • Kaspar, C.W. and Tamplin, M.L. (1993) Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl. Environ. Microbiol. 59: 2425–2429.

    PubMed  CAS  Google Scholar 

  • Kim, J.-S., Choi, S.H. and Lee, J.K. (2005) Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress. J. Bacteriol. 188: 8586–8592.

    Article  Google Scholar 

  • Kim, H.J., Lee, J.H., Rhee, J.E., Jeong, H.K., Choi, H.S., Chung, H.J., Ryu, S. and Choi, S.H. (2006) Identification and functional analysis of the putAP genes encoding Vibrio vulnificus proline dehydrogenase and proline permease. J.Microbiol. Biotechnol. 12: 318–326.

    Google Scholar 

  • Larsen, M.H., Blackburn, N., Larsen, J.L. and Olsen, J.E. (2004) Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology 150: 1283–1290.

    Article  PubMed  CAS  Google Scholar 

  • LeaMaster, B.R.; Walsh W.A., Brock, J.A. and Fujioka, R.S. (1997) Cold stress-induced changes in the aerobic heterotrophic gastrointestinal tract bacterial flora of red hybrid tilapia. J. Fish Biol. 50: 770–780.

    Article  Google Scholar 

  • Lee, J.H. and Choi, S.H. (2006) Coactivation of Vibrio vulnificus putAP operon by cAMP receptor protein and PutR through cooperative binding to overlapping sites. Mol. Microbiol. 60: 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Lenski, R.E. (2002) Experimental Evolution: a long-term study with E. coli, In: M. Pagel (ed.) Encyclopedia of Evolution, vol. 1. Oxford University Press, New York, pp. 342–344.

    Google Scholar 

  • Lenski, R.E. and Bennett, A.F. (1993) Evolutionary response of Escherichia coli to thermal stress. Evolution 142: S47–S64.

    Google Scholar 

  • Lenski, R.E., Rose, M.R., Simpson, S.C. and Tadler, S.C. (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 128: 1315–1341.

    Article  Google Scholar 

  • Lin, C., Yu, R.-C. and Chou, C.-C. (2004) Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment. Int. J. Food Microbiol. 92: 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, R., Boxshall, G. and Clark, P. (1998) A Dictionary of Ecology, Evolution, and Systematics, 2nd Ed. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Madigan, M.T. and Martinko, J.M. (2006) Prokaryotic diversity: the Bacteria. Brock Biology of Microorganisms, 11th Ed. Pearson Prentice Hall, Upper Saddle River, NJ, pp. 355–357.

    Google Scholar 

  • Marco-Noales, E., Biosca, E.G. and Amaro, C. (1999) Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2 (serovar E). Appl. Environ. Microbiol. 65: 1117–1126.

    PubMed  CAS  Google Scholar 

  • McDougald, D. and Kjelleberg, S. (2006) Adaptive responses of vibrios, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 133–155.

    Google Scholar 

  • McGovern, V.P. and Oliver, J.D. (1995) Induction of cold-responsive proteins in Vibrio vulnificus. J. Bacteriol. 177: 4131–4133.

    PubMed  CAS  Google Scholar 

  • Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu C.-Y., and Schoolnik, G.K. (2005) Chitin induces natural competence in Vibrio cholerae. Science 310: 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, N. and Eguchi M. (1997) Response to low osmotic stress in a fish pathogen, Vibrio anguillarum. FEMS Microbiol. Lett. 22: 225–231.

    Article  CAS  Google Scholar 

  • Nishiguchi, M.K. (2000) Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl. Environ. Microbiol. 66: 3550–3555.

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi, M.K. (2001) Co-evolution of symbionts and hosts: The sepiolid-Vibrio model, In: J. Seckbach (ed.) Symbiosis: Mechanisms and Model Systems. Cole-Kluwer, Dordrecht, The Netherlands, pp. 757–774.

    Google Scholar 

  • Nishiguchi, M.K. (2002) Host recognition is responsible for symbiont composition in environmentally transmitted symbiosis. Microbial Ecol. 44: 10–18.

    Article  CAS  Google Scholar 

  • Nishiguchi, M.K. and Jones, B.W. (2004) Microbial biodiversity of within the Vibrionaceae, In: J. Seckbach (ed.) Origins, Evolution, and Biodiversity of Microbial Life. Kluwer, Dordrecht, The Netherlands, pp. 531–548.

    Google Scholar 

  • Nishiguchi, M.K. and Nair, V.S. (2003) Evolution of symbiosis in the Vibrionaceae: a combined approach using molecules and physiology. Int. J. Syst. Evol. Microbiol. 53: 2019–2026.

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi, M.K., Ruby, E.G. and McFall-Ngai, M.J. (1998) Competitive dominance during colonization is an indicator of coevolution in an animal-bacterial symbiosis. Appl. Environ. Microbiol. 64: 3209–3213.

    PubMed  CAS  Google Scholar 

  • Odic, D., Turk, V. and Stopar, S. (2007) Environmental stress determines the quality of bacterial lysate and its utilization efficiency in a simple microbial loop. Microbial Ecol. 53: 639–649.

    Article  Google Scholar 

  • Olafsen, J.A., Mikkelsen, H.V., Glever, H.M. and Hansen, G.H.. (1993) Indigenous bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl. Environ. Microbiol. 59: 1848–1854.

    PubMed  CAS  Google Scholar 

  • Owens, L. and Busico-Salcedo, N. (2006) Vibrio harveyi: pretty problems in paradise, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 266–280.

    Google Scholar 

  • Park, K.-J., Kang, M.-J., Kim, S.H., Lee H.-J., Lim J.-K., Choi S.H., Park S.-J. and Lee K.-H.. (2004) Isolation and characterization of rpoS from a pathogenic bacterium, Vibrio vulnificus: role of sigma (S) in survival of exponential-phase cells under oxidative stress. J. Bacteriol. 186: 3304–3312.

    Article  PubMed  CAS  Google Scholar 

  • Paz, A., Kirzhner, V., Nevo, E. and Korol, A. (2005) Coevolution of DNA-interacting proteins and genome “dialect”. Mol. Biol. Evol. 23: 56–64.

    Article  PubMed  Google Scholar 

  • Prouty, M.G. and Klose, K.E. (2006) Vibrio cholerae the genetics of pathogenesis and environmental persistence, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 311–339.

    Google Scholar 

  • Rhee, J.E., Ju, H.-M., Park, U., Park, B.C. and Choi, S.H. (2006) Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093–1098.

    Google Scholar 

  • Rhee, J.E., Rhee J.H., Ryu, P.Y. and Choi, S.H. (2002) Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 254–251.

    Google Scholar 

  • Riehle, M.R., Bennett, A.F., Lenski, R.E. and Long, A.D. (2003) Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Physiol. Gen. 14: 47–58.

    CAS  Google Scholar 

  • Ripp, S., Jegier, P., Birmele, M., Johnson, C.M., Daumer, K.A., Garland, J.L. and Sayler, G.S. (2006) Linking bacteriophage infection to quorum sensing signaling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J. Appl. Microbiol. 100: 488–499.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, E., Koren, O., Reshef, L., Efrony, R. and Zilber-Rosenberg, I. (2007) The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5: 355–362.

    Article  PubMed  CAS  Google Scholar 

  • Roszak, D.B. and Colwell R.R. (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379.

    PubMed  CAS  Google Scholar 

  • Rowe-Magnus, D.A., Zouine, M. and Mazel, D. (2006) The adaptive genetic arsenal of pathogenic Vibrio species: the role of integrons, In: F.L. Thompson, B. Austin and J. Swings (eds) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 95–111.

    Google Scholar 

  • Ruby, E.G. (1996) Lessons from a cooperative animal-bacterial association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Ann. Rev. Microbiol. 50: 591–624.

    Article  CAS  Google Scholar 

  • Ruby, E.G. and McFall-Ngai M.J. (1999) Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7: 414–420.

    Article  PubMed  CAS  Google Scholar 

  • Sawabe, T. (2006) Ch. 15. The mutual partnership between Vibrio halioticoli and abalones, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 219–230.

    Google Scholar 

  • Sawabe, T., Oda, Y., Shiomi, Y. and Ezura, Y. (1995) Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microbial Ecol. 30: 192–202.

    Article  Google Scholar 

  • Sleator, R.D. and Hill C. (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26: 49–71.

    Article  Google Scholar 

  • Smith, B. and Oliver J.D. (2006) In situ gene expression by Vibrio vulnificus. Appl. Environ. Microbiol. 72: 2244–2246.

    Article  PubMed  CAS  Google Scholar 

  • Stabili, L., Gravili, C., Piraino, S., Boero, F. and Alifano, P. (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microbial Ecol. 52: 603–608.

    Article  CAS  Google Scholar 

  • Szpilewska, H., Czyz, A. and Wegrzyn, G. (2003) Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress. Curr. Microbiol. 47: 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, F.L. and Swings, J. (2006) Taxonomy of the vibrios, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 29–43.

    Google Scholar 

  • Urakawa, H. and Rivera I.N.G. (2006) Aquatic environment, In: F.L. Thompson, B. Austin and J. Swings (eds.) The Biology of the Vibrios. ASM Press, Washington, D.C., pp. 175–189.

    Google Scholar 

  • Valentine, R.C. and Valentine, D.L. (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Progr. Lipid Res. 43: 383–402.

    Article  CAS  Google Scholar 

  • Vattanaviboon P. and Mongkolsuk S. (2001) Unusual adaptive, cross-protection response and growth phase resistance against peroxide killing in a bacterial shrimp pathogen, Vibrio harveyi. FEMS Microbiol. Lett. 47: 111–116.

    Article  Google Scholar 

  • Ventosa, A. (2005) Salinivibrio, In: D.J. Brenner, N.R. Krieg and J.R. Staley (eds.) Bergey’s Manual Systematic Bacteriology: The Proteobacteria, vol. 2, 2nd Ed. Springer-Verlag, New York, pp. 552–555.

    Google Scholar 

  • Verschuere, L., Rombaut, G., Sorgeloos, P. and Verstraete, W. (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64: 655–671.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H.C. and Wang, P. (2004) Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. J. Appl. Microbiol. 96: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Ren, H., Wang, S. and Peng, X. (2004) Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res. Microbiol. 155: 835–842.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Wang, S., Ren, H., Lin, X., Wu, L. and Peng, X. (2005) Proteomic analysis on the expression of outer membrane proteins of V. alginolyticus at different sodium concentrations. Proteomics 5: 3142–3152.

    Article  PubMed  CAS  Google Scholar 

  • Zielke, R., Sikora, A., Dutkiewicz, R., Wegrzyn, G. and Czyz, A. (2003) Involvement of the cgtA gene function in stimulation of DNA repair in Escherichia coli and Vibrio harveyi. Microbiology 49: 1763–1770.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Nishiguchi lab for their insightful discussions on the topic of vibrio stress. This work was supported in part by grants from the National Science Foundation Population Biology pr­ogram (DEB-0316516) and the National Institutes of Health (SO6 GM008136-32S2-1) to M.K.N. W.S. was supported by the NIH-MBRS RISE program at New Mexico State University (GM-61222-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Soto, W., Lostroh, C.P., Nishiguchi, M.K. (2010). Physiological Responses to Stress in the Vibrionaceae. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_20

Download citation

Publish with us

Policies and ethics