Skip to main content

How Rhizobia Survive in the Absence of a Legume Host, a Stressful World Indeed

  • Chapter
  • First Online:
Symbioses and Stress

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 17))

Abstract

In the preceding decade, numerous advances have been made in understanding the genes and proteins involved in rhizobial responses to stress, particularly those caused by desiccation, pH, and nutrient deprivation. Often, the genes and proteins that are expressed under one stress condition overlap with those induced under other stress conditions. Although most studies on rhizobial stress responses employ planktonic cells, one way that rhizobia, as nonspore formers, could maximize their survival under stress conditions is to establish biofilms, surface-attached communities. However, few studies of this life style for rhizobia have been undertaken especially with regard to stress. The knowledge gained from learning about how planktonic cells respond to stress must now be applied to rhizobial biofilms because they serve as reservoirs of bacteria in the rhizosphere when a legume host is absent. By so doing, we will gain a much better understanding of how this fascinating and important group of soil bacteria lives in the “real world.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This review is dedicated to memory of the late John G. Streeter, a pioneer in studying the stress responses of the Bradyrhizobium japonicum–soybean symbiosis.

References

  • An, D. and Parsek, M.R. (2007) The promise and peril of transcriptional profiling in biofilm communities. Curr. Opin. Microbiol. 10: 292–296.

    Article  PubMed  CAS  Google Scholar 

  • Breedveld, M.W., Dijkema, C., Zevenhuizen, L. and Zehnder, A.J.B. (1993) Response of intracellular carbohydrates to a NaCl shock in Rhizobium leguminosarum biovar trifolii TA1 and Rhizobium meliloti SU47. J. Gen. Microbiol. 139: 3157–3163.

    CAS  Google Scholar 

  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu. Rev. Microbiol. 49: 711–745.

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial biofilms: a common cause of ­persistent infections. Science 284: 1318–1322.

    Article  PubMed  CAS  Google Scholar 

  • Cytryn, E.D., Sangurdekar, D.P., Streeter, J.G., Franck, W.L., Chang, W., Stacey, G., Emerich, D.W., Joshi, T., Xu, D. and Sadowsky, M.J. (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 189: 6751–6762.

    Article  PubMed  CAS  Google Scholar 

  • Danese, P.N., Pratt, L.A. and Kolter, R. (2000) Exopolysaccharide production is required for ­development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182: 3593–3596.

    Article  PubMed  CAS  Google Scholar 

  • Davet, P. (2004) Microbial Ecology of the Soil and Plant Growth, Science Publishers, Enfield, NH.

    Google Scholar 

  • Davies, B.W. and Walker, G.C. (2008) A highly conserved protein of unknown function is required by Sinorhizobium meliloti for symbiosis and environmental stress protection. J. Bacteriol. 190: 1118–1123.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth, M.J. and Glenn, A.R. (1999) Problems of adverse pH and bacterial strategies to combat it. Novartis Found. Symp. 221: 4–14.

    PubMed  CAS  Google Scholar 

  • Domínguez-Fererras, A., Pérez-Arnedo, R., Becker, A., Olivares, J., Soto, M.J. and Sanjuán, J. (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J. Bacteriol. 188: 7617–7625.

    Article  Google Scholar 

  • Elsheikh, E.A.E. and Wood, M. (1989) Response of chickpea and soybean rhizobia to salt: osmotic and specific ion effects of salts. Soil Biol. Biochem. 21: 889–895.

    Article  Google Scholar 

  • Fenner, B.J., Tiwari, R.P., Reeve, W.G., Dilworth, M.J. and Glenn, A.R. (2004) Sinorhizobium ­medicae genes whose regulations involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol. Lett. 236: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R.C., Rovira, A.D. and Cock, T.W. (1983) Ultrastructure of the Root-Soil Interface The ­American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  • Fred, E.B., Baldwin, I.L. and McCoy, E. (1932) Root Nodule Bacteria and Leguminous Plants. ­University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Fujishige, N.A., Kapadia, N.N., De Hoff, P.L. and Hirsch, A.M. (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol. Ecol. 56: 195–205.

    Article  PubMed  CAS  Google Scholar 

  • Fujishige, N.A., Lum, M.R., De Hoff, P.L., Whitelegge, J.P., Faull, K.F. and Hirsch, A.M. (2008) Rhizobium common nod genes are required for biofilm formation. Mol. Microbiol. 67: 504–595.

    Article  PubMed  CAS  Google Scholar 

  • Glenn, A.R. and Dilworth, M.J. (1994) The life of root nodule bacteria in the acidic underground. FEMS Microbiol. Lett. 123: 1–10.

    Article  CAS  Google Scholar 

  • Glenn, A.R., Reeve, W.G., Tiwari, R.P. and Dilworth, M.J. (1999) Acid tolerance in root nodule ­bacteria. Novartis Found. Symp. 221:112–130.

    PubMed  CAS  Google Scholar 

  • Gorbushina, A.A., Kort, R., Schulte, A., Lazarus, D., Schnetger, B., Brumsack, H.-J., Broughton, W.J. and Favet, J. (2007) Life in Darwin’s dust: intercontinental transport and survival of microbes in the nineteenth century. Environ. Microbiol. 9: 2911–2922.

    Article  PubMed  CAS  Google Scholar 

  • Goss, T.G., O’Hara, G.W., Dilworth, M.J. and Glenn, A.R. (1990) Cloning, characterization, and complementation of lesions causing acid sensitivity in Tn5-induced mutants of Rhizobium meliloti WSM419. J. Bacteriol. 172: 5173–5179.

    PubMed  CAS  Google Scholar 

  • Graham, P.H., Viteri, S.E., Mackie, F., Vargas, A.T. and Palacios, A. (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res. 5: 121–128.

    Article  Google Scholar 

  • Graham, P.H., Draeger, K.J., Ferrey, M.L., Conroy, M.J., Hammer, B.E., Martínez, E., Arons, S.R. and Quinto, C. (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40: 189–207.

    Article  Google Scholar 

  • Hirsch, P.R. (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol. 133: 159–171.

    Article  Google Scholar 

  • Hogan, D. and Kolter, R. (2002) Why are bacteria refractory to antimicrobials? Curr. Opin. Microbiol. 5: 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Jurcisek, J.A. and Bakaletz, L.O. (2007) Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J. Bacteriol. 189: 3868–3875.

    Article  PubMed  CAS  Google Scholar 

  • Krol, E. and Becker, A. (2004) Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol. Gen. Genom. 272: 1–17.

    Article  CAS  Google Scholar 

  • Laguerre, G., Bardin, M. and Amarger, N. (1993) Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Can. J. Microbiol. 39: 1142–1149.

    Article  CAS  Google Scholar 

  • Martínez-Romero, E., Segovia, L., Mercante, F.M., Franco, A.A., Graham, P. and Pardo, M.A. (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41: 417–426.

    Article  PubMed  Google Scholar 

  • Matsukawa, M. and Greenberg E.P. (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186: 4449–4456.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, J.J., Davies, H., Hore, T.A., Miller, S.H., Dufour, J.-P. and Ronson, C.W. (2007) Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl. Environ. Microbiol. 73: 3984–3992.

    Article  PubMed  CAS  Google Scholar 

  • McKay, I.A. and Djordjevic, M.A. (1993) Production and excretion of nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl. Environ. Microbiol. 59: 3385–3392.

    PubMed  CAS  Google Scholar 

  • Mendrygal, K.E. and Gonzalez, J.E. (2000) Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J.A.W., Bending, G.D. and White, P.J. (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J. Exp. Bot. 56: 1729–1739.

    Article  PubMed  CAS  Google Scholar 

  • Morón, B., Soria-Díaz, M.E., Ault, J., Verrolos, G., Noreen, S., Rodríquez-Navarro, D.N., Gil-Serrano, A., Thomas-Oates, J., Megías, M. and Sousa, C. (2005) Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem. Biochem. 12: 1029–1040.

    Google Scholar 

  • Nandasena, K.G., O’Hara, G.W., Tiwari, R.P. and Howieson, J.G. (2006) Symbiotically diverse ­root-nodule bacteria able to nodulate Biserrula pelecinus L. emerge six years after introduction of this legume to Australia. Appl. Environ. Microbiol. 72: 7365–7367.

    Article  PubMed  CAS  Google Scholar 

  • Nandasena, K.G., O’Hara, G.W., Tiwari, R.P. and Howieson, J.G. (2007) In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ. Microbiol. 9: 2496–2511.

    Article  PubMed  CAS  Google Scholar 

  • Pongsilp, N., Teamroong, N., Nuntagij, A., Boonkerd, N. and Sadowsky, M.J. (2002) Genetic structure of indigenous non-nodulating and nodulating populations of Bradyrhizobium in soils from Thailand. Symbiosis 33: 39–58.

    CAS  Google Scholar 

  • Putnoky, P., Kereszt, A., Nakamura, T., Endre, G., Grosskopf, E., Kiss, P. and Kondorosi, A. (1998) The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol. Microbiol. 28: 1091–1101.

    Article  PubMed  CAS  Google Scholar 

  • Ramos, J.L., Galledgos, M.-T., Marquéz, S., Ramos–González, M.-I., Espinosa-Uergel, M. and Segura, A. (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol. 4: 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, W.G., Tiwari, R.P., Guerreiro, N., Stubbs, J., Dilworth, M.J., Glenn, A.R., Rolfe, B.G., Djordjevic, M.A. and Howieson, J.G. (2004) Probing for pH-regulated proteins in Sinorhizobium ­medicae using proteomic analysis. J. Mol. Microbiol. Biotechnol. 7: 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, W.G., Bräu, L., Castelli, J., Garau, G., Sohlenkamp, C., Geiger, O., Dilworth, M.G., Glenn, A.R., Howieson, J.G. and Tiwari, R.P. (2006) The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions. Microbiology 152: 3049–3059.

    Article  PubMed  CAS  Google Scholar 

  • Rinaudi, L., Fujishige, N.A., Hirsch, A.M., Banchio, E., Zorreguieta, A. and Giordano, W. (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res. Microbiol. 157: 867–875.

    Article  PubMed  CAS  Google Scholar 

  • Russo, D.M., Williams, A., Edwards, A., Posadas, D.M., Finnie, C., Dankert, M., Downie, J.A. and Zorreguieta, A. (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J. Bacteriol. 188: 4474–4486.

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky, M.J. (2005) Soil stress factors influencing symbiotic nitrogen fixation, In: D. Werner and W.E. Newton (eds.) Nitrogen Fixation Research in Agriculture, Forestry, Ecology, and the ­Environment. Springer, Dordrecht, The Netherlands, pp. 89–102.

    Chapter  Google Scholar 

  • Sauviac, L., Philippe, H., Phok, K. and Bruand, C. (2007) An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J. Bacteriol. 189: 4204–4216.

    Article  PubMed  CAS  Google Scholar 

  • Schwieger, F. and Tebbe, C.C. (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) – linking of 16S rRNA gene-based single-strand ­conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl. Environ. Microbiol. 66: 3556–3565.

    Article  PubMed  CAS  Google Scholar 

  • Shime-Hattori, A., Iida, T., Arita, K., Park, K.S., Kodama, T. and Honda, T. (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol. Lett. 264: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Sohlenkamp, V., Galindo-Lagunas, K.A., Guan, Z., Vinuesa, P., Robinson, S., Thomas-Oates, J., Raetz, C.R.H. and Geiger, O. (2007) The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. Mol. Plant-Microbe Inter. 20: 1421–1430.

    Article  CAS  Google Scholar 

  • Squartini, A. (2001) Functional ecology of the Rhizobium-legume symbiosis, In: R. Pinton, Z. ­Varanini and P. Nannipieri (eds.) The Rhizosphere, Biochemistry and Organic Substances at the Soil-Plant Interface. Marcel Dekker, New York, pp. 297–326.

    Google Scholar 

  • Stanley, N.R. and Lazazzera, B.A. (2004) Environmental signals and regulatory pathways that i­nfluence biofilm formation. Mol. Microbiol. 52: 917–924.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, N.R., Britton, R.A., Grossman, A.D. and Lazazzera, B.A. (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185: 1951–1957.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, P.S. and Franklin, M.J. (2008) Physiological heterogeneity in biofilms. Nature Rev. Microbiol. 6: 199–210.

    Article  CAS  Google Scholar 

  • Streeter, J.G. (1985) Accumulation of alpha, alpha-trehalose by Rhizobium bacteria and bacteroids. J. Bacteriol. 164: 78–84.

    PubMed  CAS  Google Scholar 

  • Streeter, J.G. (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J. Appl. Microbiol. 95: 484–491.

    Article  PubMed  CAS  Google Scholar 

  • Streeter, J.G. and Bhagwat, A. (1999) Biosynthesis of trehalose from maltooligosaccharides in ­rhizobia. Can. J. Microbiol. 45: 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Streeter, J.G. and Gomez, M.L. (2006) Three enzymes for trehalose synthesis in Bradyrhizobium ­cultured bacteria and in bacteroids from soybean nodules. Appl. Environ. Microbiol. 72: 4250–4255.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J.T., Patrick, H.N., Lowther, W.L., Scott, D.B. and Ronson, C.W. (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl. Acad. Sci. USA 92: 8985–8989.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J.T. and Ronson, C.W. (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-rRNA gene. Proc. Natl. Acad. Sci. USA 95: 5145–5149.

    Article  PubMed  CAS  Google Scholar 

  • Summers, M.L., Denton, M.C. and McDermott, T.R. (1999) Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by PhoB. J. Bacteriol. 181: 2217–2224.

    PubMed  CAS  Google Scholar 

  • Tang, H., Wang, E., Sui, X., Man, C., Jia, R., Lin, D., Qu, Z. and Chen, W. (2007) The novel alkali tolerance function of tfxG in Sinorhizobium meliloti. Res. Microbiol. 158: 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, R.P., Reeve, W.G., Dilworth, M.J. and Glenn, A.R. (1996) Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology 142: 1693–1703.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, R.P., Reeve, W.G., Fenner, B.J., Dilworth, M.J., Glenn, A.R. and Howieson, J.G. (2004) ­Probing for pH-regulated proteins in Sinorhizobium medicae using transcriptional analysis. J. Mol. ­Microbiol. Biotechnol. 7: 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Vinuesa, P., Newmann-Silkow, F., Pacios-Bras, C., Spaink, H.P., Martinez-Romero, E. and Werner, D. (2003) Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant-Microbe. Inter. 16: 159–168.

    Article  CAS  Google Scholar 

  • Vos, K., Braeken, K., Fauvart, M., Ndayizeye, M., Verhaert, J., Zachurzok, S., Lambrichts, I. and Michiels, J. (2007) The Rhizobium etli opt operon is required for symbiosis and stress resistance. Environ. Microbiol. 9: 1665–1674.

    Article  PubMed  CAS  Google Scholar 

  • Vriezen, J.A.C., de Bruijn, F.J. and Nüsslein, K. (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73: 3451–3459.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Zhong, Z., Zhou, J., Cai, T. and Zhu, J. (2008) Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction. Arch. Microbiol. 189: 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Wei, X. and Bauer, W.D. (1998) Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl. Environ. Microbiol. 64: 1708–1714.

    PubMed  CAS  Google Scholar 

  • Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S. and Greenberg, E.P. (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413: 860–864.

    Article  PubMed  CAS  Google Scholar 

  • Yanni, Y.G., Rizk, R.Y., Corich, V., Squartini, A., Ninke, K., Philip-Hollingsworth, S., Orgambide, G., de Bruijn, F., Stoltzfus, J., Buckley, D., Schmidt, T.M., Mateos, P.F., Ladha, J.K. and Dazzo, F.B. (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194: 99–114.

    Article  CAS  Google Scholar 

  • Yildiz, F.H. and Schoolnik, G.K. (1999) Vibrio cholerae O1 El Tor, identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and ­biofilm formation. Proc. Natl. Acad. Sci. USA 96: 4028–4033.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, Z.-C., Zaheer, R. and Finan, T.M. (2005) Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. ­Microbiol. 58: 877–894.

    Article  PubMed  CAS  Google Scholar 

  • Zahran, H.H. (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63: 968–989.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Michael J. Sadowsky (University of Minnesota, USA) and Wayne G. Reeve (University of Murdoch, Australia) for their helpful ­comments on the manuscript. The research in the P.I.’s laboratory is funded by grants from the National Science Foundation (EF-0626896 and IOS-0747516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hirsch, A.M. (2010). How Rhizobia Survive in the Absence of a Legume Host, a Stressful World Indeed. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_18

Download citation

Publish with us

Policies and ethics