Skip to main content

Radiation effects on NAND Flash memories

  • Chapter
  • First Online:
Inside NAND Flash Memories
  • 4426 Accesses

Abstract

Electronic chips operating at sea level are constantly bombarded by a shower of high-energy neutrons, which originate from the interactions of cosmic rays with the outer layers of the atmosphere. The neutron flux changes with altitude, reaching a peak very close to the cruise altitude of airplanes, posing an even more serious threat to avionics. In addition, inevitable radioactive contaminants in the chip materials emit alpha particles, which may reach sensitive device areas and produce errors. Spacecraft and satellite electronics must operate reliably in a much harsher environment, characterized by a significant presence of ionizing radiation, in the form of protons, electrons, and heavy-ions coming from various sources. Ionizing radiation can cause either permanent or temporary damage to electronic chips, generating a plethora of effects, from flipping an SRAM memory bit from 1 to 0 or vice versa, to burning-out a power MOSFET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Holmessiedle, L. Adams, “Handbook of radiation effects” 2nd edition, Oxford University Press, Oxford, 2002

    Google Scholar 

  2. JEDEC standard JESD-89A, available on line at: www.jedec.org/download/search/JESD89A.pdf

  3. J.L. Barth, C.S. Dyer, E.G. Stassinopoulos, “Space, atmospheric, and terrestrial radiation environments,” IEEE Transactions on Nuclear Science, vol.50, no.3, p.466, 2003

    Article  Google Scholar 

  4. G.A. Ausman, F.B. McLean, “Electron-hole pair creation energy in SiO2,” Applied Physics Letters, vol.26, p.173, 1975

    Article  Google Scholar 

  5. J.M. Benedetto, H.E. Boesch, Jr., “The relationship between Co60 and 10 keV X-ray damage in MOS devices,” IEEE Transactions on Nuclear Science, vol.33, p.1318, 1986

    Article  Google Scholar 

  6. C.M. Dozier, D.B. Brown, “Effects of photon energy on the response of MOS devices,” IEEE Transactions on Nuclear Science, vol.28, no.6, p. 4137, 1981

    Article  Google Scholar 

  7. T.R. Oldham, J.M. McGarrity, “Comparison of Co and 10 keV X-ray response in MOS capacitors,” IEEE Transactions on Nuclear Science, vol.30, p.4377, 1983

    Article  Google Scholar 

  8. T.R. Oldham, “Recombination along the tracks of heavy charged particles in SiO films,” Journal of Applied Physics, vol.57, p.2695, 1985

    Article  Google Scholar 

  9. K.P. Rodbell, D.F. Heidel, H.H.K. Tang, M.S. Gordon, P. Oldiges, C.E. Murray,” Low-energy proton-induced single-event-upsets in 65 nm node, silicon-on-insulator, latches and memory cells,” IEEE Transactions on Nuclear Science, vol.54, no.6, p.2474, 2007

    Article  Google Scholar 

  10. T.P. Ma, P.V. Dressendorfer, “Ionizing radiation effects in MOS devices and circuits,” Wiley, New York, 1989

    Google Scholar 

  11. M.R. Shaneyfelt, J.R. Schwank, D.M. Fleetwood, P.S. Winokur, K.L. Hughes, F.W. Sexton, “Field dependence of interface trap buildup in polysilicon and metal gate MOS devices,” IEEE Transactions on Nuclear Science, vol.37, no.6, p.1632, 1990

    Article  Google Scholar 

  12. N.S. Saks, C.M. Dozier, D.B. Brown, “Time dependence of interface trap formation in MOSFET’s following pulsed irradiation,” IEEE Transactions on Nuclear Science, vol.35, p.1168, 1988

    Article  Google Scholar 

  13. A.H. Johnston, “Super recovery of total dose damage in MOS devices,” IEEE Transactions on Nuclear Science, vol.31, p.1427, 1984

    Article  Google Scholar 

  14. D.M. Fleetwood, F.V. Thome, S.S. Tsao, P.V. Dressendorfer, V.J. Dandini, J.R. Schwank, “High temperature silicon on insulator electronics for space nuclear power systems: Requirements and feasibility,” IEEE Transactions on Nuclear Science, vol.35, no.5, p.1099, 1988

    Article  Google Scholar 

  15. J.R. Schwank, P.S. Winokur, P.J. McWhorter, F.W. Sexton, P.V. Dressendorfer, D.C. Turpin, “Physical mechanisms contributing to device rebound,” IEEE Transactions on Nuclear Science, vol.31, no.6, p.1434, 1984

    Article  Google Scholar 

  16. J.M. McGarrity, “Considerations for hardening MOS devices and circuits for low radiation doses,” IEEE Transactions on Nuclear Science, vol.27, p.1739, 1980

    Article  Google Scholar 

  17. N.S. Saks, M.G. Ancona, J.A. Modolo, “Radiation effects in most capacitors with very thin oxides at 80 K,” IEEE Transactions on Nuclear Science, vol.31, no.6, p.1249, 1984

    Article  Google Scholar 

  18. A. Scarpa, A. Paccagnella, F. Montera, G. Ghibaudo, G. Pananakakis, G. Ghidini, P.G. Fuochi, “Ionizing radiation induced leakage current on ultra-thin gate oxides,” IEEE Transactions on Nuclear Science, vol.44, no.6, p.1818, 1997

    Article  Google Scholar 

  19. M. Ceschia, A. Paccagnella, A. Cester, A. Scarpa, G. Ghidini, “Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides,” IEEE Transactions on Nuclear Science, vol.45, p.2375, 1998

    Article  Google Scholar 

  20. L. Larcher, A. Paccagnella, M. Ceschia, G. Ghidini, “A model of Radiation Induced Leakage Current (RILC) in ultra-thin gate oxides,” IEEE Transactions on Nuclear Science, vol.46, p.1553, 1999

    Article  Google Scholar 

  21. M.R. Shaneyfelt, P.E. Dodd, B.L. Draper, and R.S. Flores, “Challenges in hardening technologies using shallow-trench isolation,” IEEE Transactions on Nuclear Science, vol.45, no.6, p.2584, 1998

    Article  Google Scholar 

  22. N. Bhat, J. Vasi, “Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors,” IEEE Transactions on Nuclear Science, vol.39, no.6, p.2230, 1992

    Article  Google Scholar 

  23. H. Park, S.K. Dixit, Y.S. Choi, R.D. Schrimpf, D.M. Fleetwood, T. Nishida, S.E. Thompson, “Total ionizing dose effects on strained HfO2-based nMOSFETs,” IEEE Transactions on Nuclear Science, vol.55, p.2981, 2008

    Article  Google Scholar 

  24. P.E. Dodd, L.W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Transactions on Nuclear Science, vol.50, no.3, p.583, 2003

    Article  Google Scholar 

  25. F.W. Sexton, “Destructive single-event effects in semiconductor devices and ICs,” IEEE Transactions on Nuclear Science, vol.50, no.3, p.603, 2003

    Article  Google Scholar 

  26. L.W. Massengill, M.S. Reza, B.L. Bhuva, T.L. Turflinger, “Single-event upset cross-section modeling in combinational CMOS logic circuits,” Journal of Radiation Effects, Research and Engineering, vol.16, no.1, 1998

    Google Scholar 

  27. S.E. Diehl, J.E. Vinson, B.D. Shafer, and T.M. Mnich, “Considerations for single event immune VLSI logic,” IEEE Transactions on Nuclear Science, vol.30, p.4501, 1983

    Article  Google Scholar 

  28. P.E. Dodd, M.R. Shaneyfelt, J.A. Felix and J.R. Schwank, “Production and propagation of single-event transients in high-speed digital logic ICs,” IEEE Transactions on Nuclear Science, vol.51, no.6, p.3278, 2004

    Article  Google Scholar 

  29. R.C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies”, IEEE Transactions on Device and Materials Reliability, vol.5, no.3, p.305, 2005

    Article  MathSciNet  Google Scholar 

  30. D. Radaelli, H. Puchner, S. Wong and S. Daniel, “Investigation of multi-bit upsets in a 150 nm technology SRAM device,” IEEE Transactions on Nuclear Science, vol.52, p.2433, 2005

    Article  Google Scholar 

  31. H.R. Schwartz, D.K. Nichols, A.H. Johnston, “Single-event upset in Flash memories,” IEEE Transactions on Nuclear Science, vol.44, no.6, p.2315, 1997

    Article  Google Scholar 

  32. D.N. Nguyen, C.I. Lee, A.H. Johnston, “Total ionizing dose effects on Flash memories,” IEEE Radiation Effect Data Workshop 1998, p.100

    Google Scholar 

  33. D.N. Nguyen, S.M. Guertin, G.M. Swift, A.H. Johnston, “Radiation effects on advanced Flash memories,” IEEE Transactions on Nuclear Science, vol.46, no.6, p.1744, 1999

    Article  Google Scholar 

  34. D.R. Roth, J.D. Kinninson, B.G. Karlhuff, L.R. Lander, G.S. Bognaski, K. Chao, G.M. Swift, “SEU and TID testing of the Samsung 128 Mbit and the Toshiba 256 Mbit Flash memory,” IEEE Radiation Effect Data Workshop 2000, p.96

    Google Scholar 

  35. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, “Sub-picosecond conduction through thin SiO2 layers triggered by heavy ions,” Journal of Applied Physics, vol.99, no.7, p.074101, 2006

    Article  Google Scholar 

  36. M. Bagatin, S. Gerardin, G. Cellere, A. Paccagnella, A. Visconti, S. Beltrami, R. Harboe-Sørensen, A. Virtanen, “Key Contributions to the Cross Section of NAND Flash Memories Irradiated with Heavy Ions,” IEEE Transactions on Nuclear Science, vol.55, no.6, p.3302, 2009

    Article  Google Scholar 

  37. S. Guertin, D. Nguyen, J. Patterson, “Microdose Induced Data Loss on Floating Gate Memories,” IEEE Transactions on Nuclear Science, vol.53, no.6, p.3518, 2006

    Article  Google Scholar 

  38. H. Schmidt, D. Walter, M. Brüggerman, F. Gliem, R. Harboe-Sørensen, P. Roos, “Annealing of static data errors in NAND-Flash memories,” Proceedings of RADECS 2007, p.224

    Google Scholar 

  39. T.R. Oldham, R. Ladbury, M. Friendlich, H. Kim, M. Berg, T. Irwin, C. Seidleck, K. LaBel, “SEE and TID Characterization of an Advanced Commercial 2Gbit NAND Flash Nonvolatile Memory,” IEEE Transactions on Nuclear Science, vol.53, no.6, p.3217, 2006

    Article  Google Scholar 

  40. H. Schmidt, D. Walter, M. Brüggerman, F. Gliem, R. Harboe-Sørensen, A. Virtanen, “Heavy ion SEE studies on 4-Gbit NAND-Flash memories,” Proceedings of RADECS 2007, p.632

    Google Scholar 

  41. F. Irom, D. Nguyen, “Single Event Effect Characterization of High Density Commercial NAND and NOR Nonvolatile Flash Memories,” IEEE Transactions on Nuclear Science, vol.54, no.6, p.2547, 2007

    Article  Google Scholar 

  42. T. Langley, P. Murray, “SEE and TID test results of 1Gb Flash memory,” IEEE Radiation Effect Data Workshop 2005, p.58

    Google Scholar 

  43. M. Bagatin, G. Cellere, S. Gerardin, A. Paccagnella, A. Visconti, S. Beltrami, “TID sensitivity of NAND Flash memory building blocks,” IEEE Transactions on Nuclear Science, vol.56, no.4, p.1909, 2007

    Article  Google Scholar 

  44. D.N. Nguyen, L.F. Scheick, “TID, SEE and radiation induced failures in advanced Flash memories,” IEEE Radiation Effect Data Workshop 2003, p.18

    Google Scholar 

  45. C. Compagnoni, A. Spinelli, R. Gusmeroli, A. Lacaita, S. Beltrami, A. Ghetti, A. Visconti, “First evidence for injection statistics accuracy limitations in NAND Flash constant-current Fowler-Nordheim programming,” IEEE International Electron Device Meeting 2007, p.165

    Google Scholar 

  46. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, S. Beltrami, “Single event effects in NAND Flash memory arrays,” IEEE Transactions on Nuclear Science, vol.53, no.4, p.1813, 2006

    Article  Google Scholar 

  47. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, S. Beltrami, J. Schwank, M. Shaneyfelt, Philippe Paillet, “Total ionizing dose effects in NOR and NAND Flash memories,” IEEE Transactions on Nuclear Science, vol.54, no.4, p.1066, 2007

    Article  Google Scholar 

  48. E.S. Snyder, P.J. McWhirter, T.A. Dellin, J.D. Sweetman, “Radiation response of floating gate EEPROM memory cells,” IEEE Transactions on Nuclear Science, vol.36, no.6, p.2131, 1989

    Article  Google Scholar 

  49. G. Cellere, A. Paccagnella, S. Lora, A. Pozza, G. Tao, A. Scarpa, “Charge loss after 60Co irradiation on Flash arrays,” IEEE Transactions on Nuclear Science, vol.51, no.5, p.2912, 2004

    Article  Google Scholar 

  50. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, “Ionizing radiation effects on floating gates,” Applied Physics Letters, vol.85, no.3, p.485, 2004

    Article  Google Scholar 

  51. G. Cellere, A. Paccagnella, A. Visconti, P. Caprara, M. Bonanomi, “A model for TID effects on Floating Gate memory cells,” IEEE Transactions on Nuclear Science, vol. 6, no. 49, p. 3753, 2004

    Article  Google Scholar 

  52. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, A. Candelori, S. Lora, “Effect of different TID sources on charge loss from programmed FG cells,” IEEE Transactions on Nuclear Science, vol.52, no.6, p.2372, 2005

    Article  Google Scholar 

  53. R.D. Katznelson, D. Frohman-Bentchkowsky, “An erase mode for FAMOS EPROM devices,” IEEE Transactions on Electron Devices, vol.27, no.9, p.1744, 1980

    Article  Google Scholar 

  54. V.A.K. Raparla, S.C. Lee, R.D. Scrimpf, D.M. Fleetwood, K.F. Galloway, “A model of radiation effects on nitride-oxide films for power MOSFET applications,” Solid State Electr., vol.47, p.775, 2003

    Article  Google Scholar 

  55. H. Aozasa, I. Fujiwara, A. Nakamura, Y. Komatsu, “Analysis of carrier traps in Si3N4 in oxide/nitride/oxide for Metal/Oxide/Nitride/Oxide/Silicon nonvolatile memories,” Journal of Applied Physics, 38, p.1441, 1999

    Article  Google Scholar 

  56. D.M. Fleetwood, P.S. Wikonur, L.J. Lorence, W. Beezhold, P.V. Dressendorfer, J.R. Schwank, “The response of MOS devices to dose-enhanced low-energy radiation,” IEEE Transactions on Nuclear Science, vol.33, no.6, p.1245, 1986

    Article  Google Scholar 

  57. D.M. Fleetwood, D.E. Beutler, L.J. Lorence, D.B. Brown, B.L. Draper, L.C. Rieve, H.B. Rosenstock, D.P. Knott, “Comparison of enhanced device response and predicted X-ray dose enhancement effects in MOS oxides,” IEEE Transactions on Nuclear Science, vol.35, no.6, p.1265, 1988

    Article  Google Scholar 

  58. G. Cellere, A. Paccagnella, A. Visconti, S. Beltrami, J. Schwank, M. Shaneyfelt, L. Damien, P. Paillet, V. Ferlet-Cavrois, J. Baggio, R. Harboe-Sørensen, E. Blackmore, A. Virtanen, P. Fuochi, “Direct evidence of secondary events induced by high energy protons,” IEEE Transactions on Nuclear Science, vol.55, no.6, p.2904, 2008

    Article  Google Scholar 

  59. G. Cellere, P. Pellati, A. Chimenton, A. Modelli, L. Larcher, J. Wyss, A. Paccagnella, “Radiation effects on floating-gate memory cells,” IEEE Transactions on Nuclear Science, vol.48, no.6, p.2222, 2001

    Article  Google Scholar 

  60. G. Cellere, A. Paccagnella, L. Larcher, A. Chimenton, J. Wyss, A. Candelori, A. Modelli, “Anomalous charge loss from Floating-Gate memory cells due to heavy ions irradiation,” IEEE Transactions on Nuclear Science, vol.49, no.6, p.3051, 2002

    Article  Google Scholar 

  61. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, A. Candelori, “Transient conductive path induced by a single ion in 10nm SiO2 layers,” IEEE Transactions on Nuclear Science, vol.49, no.6, p.3304, 2004

    Article  Google Scholar 

  62. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, “Secondary effects of single ions on Floating Gate memory cells,” IEEE Transactions on Nuclear Science, vol.53, no.6, p.3291, 2006

    Article  Google Scholar 

  63. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, R. Harboe Sørensen, A. Virtanen, “Angular dependence of heavy ion effects in Floating Gate memory arrays,” IEEE Transactions on Nuclear Science, vol.54, no.6, p.2371, 2007

    Article  Google Scholar 

  64. P. McNulty, W. Beauvais, D. Roth, J. Lynch, A. Knudson, W. Stapor, “Microbeam analysis of MOS circuits,” IEEE Transactions on Nuclear Science, vol.39, no.3, p.431, 1992

    Article  Google Scholar 

  65. L. Edmonds, “A method for correcting cosine-law errors in SEU test data,” IEEE Transactions on Nuclear Science, vol.49, no.3, p.1522, 2002

    Article  Google Scholar 

  66. L. Larcher, G. Cellere, A. Paccagnella, A. Chimenton, A. Candelori, A. Modelli, " Data retention after heavy ion exposure of Floating Gate memories: analysis and simulation,” IEEE Transactions on Nuclear Science, vol.50, no.6, p.2176, 2003

    Article  Google Scholar 

  67. G. Cellere, L. Larcher, A. Paccagnella, A. Visconti, M. Bonanomi, “RILC in 10 nm SiO2 layers,” IEEE Transactions on Nuclear Science, vol.52, no.6, p.2144, 2005

    Article  Google Scholar 

  68. G. Cellere, A. Paccagnella, L. Larcher, A. Visconti, M. Bonanomi, “Sub-attoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells,” Applied Physics Letters, 88, 192909, 2006

    Article  Google Scholar 

  69. G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, “Variability in FG memories performance after irradiation,” IEEE Transactions on Nuclear Science, vol.53, no.6, p.3349, 2006

    Article  Google Scholar 

  70. A.J. Lelis, H.E. Boesch, Jr., T.R. Oldham, F.B. McLean, “Reversibility of trapped hole charge,” IEEE Transactions on Nuclear Science, vol.35, no.6, p.1186, 1988

    Article  Google Scholar 

  71. A.J. Lelis, T.R. Oldham, H.E. Boesch, Jr., F.B. McLean, “The nature of the trapped hole annealing process,” IEEE Transactions on Nuclear Science, vol.36, no.6, p.1808, 1989

    Article  Google Scholar 

  72. J.H. Stathis, D.J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” IEEE International Electron Device Meeting 1998, p.167

    Google Scholar 

  73. J.R. Schwank, D.M. Fleetwood, P.S. Winokur, P.V. Dressendorfer, D.C. Turpin, D.T. Sanders, “The role of hydrogen in radiation-induced defect formation in polysilicon gate MOS devices,” IEEE Transactions on Nuclear Science, vol.34, no.6, p.1152, 1987

    Article  Google Scholar 

  74. M. Beck, B. Tuttle, R. Schrimpf, D. Fleetwood, S. Pantelides, “Atomic displacement effects in single-event gate rupture,” IEEE Transactions on Nuclear Science, vol.55, no.6, p.3025, 2008

    Article  Google Scholar 

  75. G. Cellere, M.G. Valentini, L. Pantisano, K.P. Cheung, A. Paccagnella, “Different nature of process-induced and stress-induced defects in thin SiO2 layers,” IEEE Electron Device Letters, vol.24, no.6, p.393, 2003

    Article  Google Scholar 

  76. L. Pantisano, K.P. Cheung, “Stress induce leakage current (SILC) and oxide breakdown: are they from the same oxide traps?,” IEEE Transactions on Device and Material Reliability, p.109, 2001

    Google Scholar 

  77. J.L. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo, J. Borel, “Real-time neutron and alpha soft-error rate testing of CMOS 130nm SRAM: Altitude versus underground measurements,” IEEE International Conference on Integrated Circuit Design and Technology 2008, p.233

    Google Scholar 

  78. A. Silburt, A. Evans, A. Burghelea, W. Shi-Jie, D. Ward, R. Norrish, D. Hogle, “Building a reliable internet core using soft error prone electronics,” IEEE International Conference on Integrated Circuit Design and Technology 2008, p.227

    Google Scholar 

  79. F. Irom, T. Miyahira, D. Nguyen, J. Insoo, E. Normand, “Results of Recent 14 MeV Neutron single event effects measurements conducted by the Jet Propulsion Laboratory,” IEEE Radiation Effects Data Workshop 2007, p.141

    Google Scholar 

  80. G. Cellere, S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti, M. Bonanomi, S. Beltrami, R. Harboe- Sørensen, A. Virtanen, P. Roche, “Can atmospheric neutrons induce soft errors in NAND Floating Gate memories?,” IEEE Electron Device Letters, vol.30, no.2, p.178, 2009

    Article  Google Scholar 

  81. G. Cellere, S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti, M. Bonanomi, S. Beltrami, P. Roche, G. Gasiot, R. Harboe Sørensen, A. Virtanen, C. Frost, P. Fuochi, C. Andreani, G. Gorini, A. Pietropaolo, S. Platt, “Neutron-induced soft errors in advanced Flash memories,” IEEE International Electron Devices Meeting 2008, p.357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bagatin .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bagatin, M., Cellere, G., Gerardin, S., Paccagnella, A. (2010). Radiation effects on NAND Flash memories. In: Inside NAND Flash Memories. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9431-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9431-5_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9430-8

  • Online ISBN: 978-90-481-9431-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics