Skip to main content

Chapter 16 C4 Photosynthesis Origins in the Monocots: A Review and Reanalysis

  • Chapter
  • First Online:
C4 Photosynthesis and Related CO2 Concentrating Mechanisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 32))

Summary

C4 photosynthesis in the monocots occurs in species from three lineages: the Alismatales, Cyperaceae, and Poaceae. Previous estimates of C4 origins in the monocots have suggested one origin of C4 within the Alismatales, at least four origins in the Cyperaceae, and at least four (and likely more) origins in the Poaceae. The present Chapter explores the numbers of origins of C4 in these three lineages further, summarizing the literature and reanalyzing the phylogenetic and photosynthetic pathway data for Panicoideae grasses, using Bayesian estimation of tree topologies and stochastic mapping of photosynthetic pathway characteristics. These results suggest that there have been a minimum of 24 separate C4 origins in the monocots: 2 Alismatales, 5 Cyperaceae, and 17 Poaceae, and that transition frequencies and directions among photosynthetic pathway characteristics in the Panicoideae grasses are more complex than previously estimated. Further, the lack of species-level phylogenies and photosynthetic pathway characterizations in several lineages (particularly Cyperaceae and Chloridoideae grasses) preclude robust estimates of photosynthetic pathway origins and transitions. A concerted effort is needed to clarify these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAM:

Crassulacean acid metabolism

CCM:

CO2 concentrating mechanism

NAD-ME:

NAD-malic enzyme

NADP-ME:

NADP-malic enzyme

PCK:

Phosphoenolpyruvate carboxykinase

PEPC:

Phosphoenolpyruvate carboxylase

References

  • Agarie S, Kai M, Takatsuji H, Ueno O (1997) Expression of C3 and C4 photosynthetic characteristics in the amphibious plant Eleocharis vivipara: structure and analysis of the expression of isogenes of pyruvate, orthophosphate dikinase. Plant Mol Bio 34: 363–369

    Article  CAS  Google Scholar 

  • Agarie S, Kai M, Takatsuji H, Ueno O (2002) Environmental and hormonal regulation of gene expression of C4 photosynthetic enzymes in the amphibious sedge Eleocharis vivipara. Plant Sci 163: 571–580

    Article  CAS  Google Scholar 

  • Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae): test of monophyly and phylogenetic placement within the Panicoideae. Am J Bot 90: 796–821

    Article  CAS  Google Scholar 

  • Avandhani PN, Goh CJ, Rao AN, Arditti J (1982) Carbon fixation in orchids. In Ardetti J [ed.], Orchid biology, reviews and perspectives, vol. II, Cornell University Press, Ithaca, NY, USA. pp. 173–193

    Google Scholar 

  • Avdulov NP (1931) Kario-sistematicheskoye issledovaniye semeystva zlakov. Bull Appl Bot Gen Plant Breed Suppl 44: 1–428

    Google Scholar 

  • Beer S, Bjork M, Hellblom F, Axelsson L (2002) Inorganic carbon utilization in marine angiosperms (seagrasses). Funct Plant Biol 29: 349–354

    Article  CAS  Google Scholar 

  • Bollback JP (2006) SIMMAP: Stochastic character mapping of discrete traits on phylogenies. Software available from http://brahms.ucsd.edu/simmap.html. Version 1.0. Beta 2.3

  • Bowes G (1985) Pathways of CO2 fixation by aquatic organisms. In Lucas WJ, Berry JA [eds.], Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, MD, USA. pp. 187–210

    Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29: 379–392

    Article  CAS  Google Scholar 

  • Brown WV (1958) Leaf anatomy in grass systematics. Bot Gaz 119: 170–178

    Article  Google Scholar 

  • Bruhl JJ (1990) Taxonomic relationships and photosynthetic pathways in the Cyperaceae. Ph.D. thesis, Australian National University, Canberra. Australia

    Google Scholar 

  • Bruhl JJ, Perry S (1995) Photosynthetic pathway-related ultrastructure of C3, C4 and C3-like C3–C4 intermediate sedges (Cyperaceae), with special reference to Eleocharis. Aust J Plant Physiol 22: 521–530

    Article  CAS  Google Scholar 

  • Bruhl JJ, Wilson KL (2007) Towards a comprehensive survey of C3 and C4 photosynthetic pathways in the Cyperaceae. In Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG [eds.], Monocots: Comparative biology and evolution-Poales. Rancho Santa Ana Botanic Garden, Claremont, California, USA. Aliso 23: 99–148

    Google Scholar 

  • Bruhl JJ, Stone NE, Hattersley PW (1987) C4 acid decarboxylation enzymes and anatomy in sedges (Cyperaceae): First record of NAD-malic enzymes species. Aust J Plant Physiol 14: 719–728

    Article  CAS  Google Scholar 

  • Bruhl JJ, Watson L, Dallwitz MJ (1992) Genera of Cyperaceae: interactive identification and information retrieval. Taxon 41: 225–234

    Article  Google Scholar 

  • Carolin RC, Jacobs SWL, Vesk M (1977) The ultrastructure of Kranz cells in the family Cyperaceae. Bot Gaz 138: 413–419

    Article  Google Scholar 

  • Casati P, Lara MV, Andreo CS (2000) Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submerged aquatic species. Plant Physiol 123: 1611–1622

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Lara MV, Andreo CS (2001) Regulation of enzymes involved in C4 photosynthesis and the antioxidant metabolism by UV-B radiation in Egeria densa, a submersed aquatic species. Photosynth Res 71: 251–264

    Article  Google Scholar 

  • Christin P-A, Salamin N, Savolainen V, Duvall MR, Besnard G (2007) C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol 17: 1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Christin P-A, Besnard G, Samaritani E, Duvall MR, ­Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Columbus JT, Cerros-Tlatilpa R, Kinney MS, Siqueiros-Delgado ME, Bell HL, Griffith MP, Refulio-Rodriguez NF (2007) Phylogenetics of Chloridoideae (Gramineae): A preliminary study based on nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. In Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG [eds.], Monocots: Comparative biology and evolution-Poales. Rancho Santa Ana Botanic Garden, Claremont, California, USA. Aliso 23: 565–579

    Google Scholar 

  • Crayn DM, Winter K, Smith JAC (2004) Multiple origins of Crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Nat Acad Sci, USA 101: 3703–3708

    Article  CAS  Google Scholar 

  • Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Tr Ecol Evol 6: 95–99

    Article  CAS  Google Scholar 

  • Ellis RP (1984) Eragrostis walteri – a first record of non-Kranz leaf anatomy in the sub-family Chloridoideae (Poaceae). S Afr J Bot 3: 380–386

    Google Scholar 

  • Ghamkhar K (2004) Phylogenetic relationships of Abildgaardieae (Cyperaceae) inferred from chloroplast and nuclear DNA sequences and pollen data. PhD thesis, University of New England, Armidale, NSW Australia

    Google Scholar 

  • Ghamkhar K, Marchant A, Wilson KL, Bruhl JJ (2007) Phylogeny of Abildgaardieae (Cyperaceae) inferred from ITS and trnL-F data. In Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG [eds.], Monocots: Comparative biology and evolution-Poales. Rancho Santa Ana Botanic Garden, Claremont, California, USA. Aliso 23: 149–164

    Google Scholar 

  • Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosythesis. Amer J Bot 88: 1993–2012

    Article  CAS  Google Scholar 

  • Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ, Millam KC, Meerow AW, Molvray M, Kores PJ, O’Brien HE, Hall JC, Kress WJ, Sytsma KJ (2006) Phylogenetic relationships of monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. In Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG [eds.], Monocots: Comparative biology and evolution-Poales. Rancho Santa Ana Botanic Garden, Claremont, California, USA. Aliso 22: 28–51

    Google Scholar 

  • Goetghebeur P (1998) Cyperaceae. In Kubitzki F, Huber H, Rudall PJ, Stevens PS, Stutzel T [eds.], The Families and Genera of Vascular Plants, Vol. 4, Springer-Verlag, Berlin, Germany. pp. 141–190

    Google Scholar 

  • Gowik U, Engelmann S, Bläsing OE, Raghavendra AS, Westhoff P (2006) Evolution of C4 phosphoenolpyruvate carboxylase in the genus Alternanthera: gene families and the enzymatic characteristics of the C4 isozyme and its orthologues in C3 and C3/C4 Alternatheras. Planta 223: 359–368

    Article  PubMed  CAS  Google Scholar 

  • GPWG (2000) A phylogeny of the grass family (Poaceae), as inferred from eight character sets. In Jacobs SWL, Everett JE [eds.], Grasses: Systematics and Evolution. CSIRO, Collingwood, Victoria, Australia. pp. 3–7

    Google Scholar 

  • Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111: 1145–1168

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt G (1884) Physiological plant anatomy. Today and Tomorrow’s Book Agency, New Delhi, India. 777 pp

    Google Scholar 

  • Hattersley PW (1987) Variations in photosynthetic pathway. In Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME [eds.], Grass Systematics and Evolution. Smithsonian Institution, Washington, DC, USA. pp. 49–64

    Google Scholar 

  • Helder RJ, Van Harmelen M (1982) Carbon assimilation pattern in the submerged leaves of the aquatic angiosperm: Vallisneria spiralis L. Acta Bot Neerl 31: 281–295

    CAS  Google Scholar 

  • Hilu KW, Alice LA (2001) A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Syst Bot 26: 386–405

    Google Scholar 

  • Hinchliff CE, Lliully A AE, Carey C, Roalson EH (2010) The origins of Eleocharis (Cyperaceae) and the status of Websteria, Egleria, and Chillania. Taxon 59: 709–719

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes (Bayesian Analysis of Phylogeny). University of California, San Diego, CA

    Google Scholar 

  • Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52: 131–158

    Article  PubMed  Google Scholar 

  • Ibrahim DG, Burke T, Ripley BS, Osborne CP (2008) A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. Ann Bot 103: 127–136.

    Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64: 121–175

    Article  Google Scholar 

  • Kellogg EA (1999) Phylogenetic aspects of the evolution of C4 photosynthesis. In Sage RF, Monson RK [eds.], C4 Plant Biology. Academic Press, San Diego, California, USA. pp. 411–444

    Google Scholar 

  • Kellogg EA (2000) The grasses: a case study in microevolution. Annu Rev Ecol Syst 31: 217–238

    Article  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125: 1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17: 76–80

    Article  PubMed  CAS  Google Scholar 

  • Lara MV, Casati P, Andreo CS (2002) CO2-concentrating mechanisms in Egleria densa, a submersed aquatic plant. Physiol Plant 115: 487–495

    Article  PubMed  CAS  Google Scholar 

  • Lerman JC, Raynal J (1972) La teneur en isotopes stables du carbone chez les Cypéracées: sa valeur taxonomique. Compt Rend Acad Sci Paris, Sér 3, Sci Vie 275: 1391–1394

    Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22: 443–463

    Article  Google Scholar 

  • Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29: 393–405

    Article  CAS  Google Scholar 

  • Mathews S, Spangler RE, Mason-Gamer RJ, Kellogg EA (2002) Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and ndhF. Int J Pl Sci 163: 441–450

    Article  Google Scholar 

  • Metcalfe CR (1971) Anatomy of the Monocotyledons. Royal Bot Gard 5: 44–49

    Google Scholar 

  • Minin V, Abdo Z, Joyce P, Sullivan J (2003) Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52: 674–683

    Article  PubMed  Google Scholar 

  • Muasya AM, Simpson DA, Chase MW, Culham A (1998) An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Pl Syst Evol 211: 257–271

    Article  CAS  Google Scholar 

  • Muasya AM, Bruhl JJ, Simpson DA, Chase MW, Culham A (2000) Suprageneric phylogeny of Cyperaceae: a combined analysis. In Wilson KL, Morrison DA [eds.], Monocots: Systematics and Evolution. CSIRO, Melbourne, Australia. pp. 593–601

    Google Scholar 

  • Muasya AM, Simpson DA, Chase MW (2002) Phylogenetic relationships in Cyperus L. s.l. (Cyperaceae) inferred from plastid DNA sequence data. Bot J Linn Soc 138: 145–153

    Article  Google Scholar 

  • Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E (2009a) Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Bot Rev 75: 2–21

    Article  Google Scholar 

  • Muasya AM, Vrijdahs A, Simpson DA, Chase MW, Goetghebeur P, Smets E (2009b) What is a genus in Cypereae: phylogeny, character homology assessment and generic circumscription. Bot Rev 75: 52–66

    Google Scholar 

  • Murphy LR, Barroca J, Franceschi VR, Lee R, Roalson EH, Edwards GE, Ku MSB (2007) Diversity and plasticity of C4 photosynthesis in Eleocharis (Cyperaceae). Funct Plant Biol 34: 571–580

    Article  CAS  Google Scholar 

  • Nielsen R (2002) Mapping mutations on phylogenies. Syst Biol 51: 729–739

    Article  PubMed  Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE (1987) New structural/biochemical associations in leaf blades of C4 grasses (Poaceae). Aust J Plant Physiol 14: 403–420

    Article  CAS  Google Scholar 

  • Raffiudin R, Crozier RH (2007) Phylogenetic analysis of honey bee behavioral evolution. Mol Phylog Evol 43: 543–552

    Article  CAS  Google Scholar 

  • Rao SK, Fukayama H, Reiskind JB, Miyao M, Bowes G (2006) Identification of C4 responsive genes in the facultative C4 plant Hydrilla verticillata. Photosyn Res 88: 173–183

    Article  PubMed  CAS  Google Scholar 

  • Renner SS, Beenken L, Grimm GW, Kocyan A, Ricklefs RE (2007) The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution 61: 2701–2719

    Article  PubMed  CAS  Google Scholar 

  • Roalson EH (2007) C4 photosynthesis: convergence upon convergence upon.... Curr Biol 17: R776–R778

    Article  PubMed  CAS  Google Scholar 

  • Roalson EH (2008) C4 photosynthesis: differentiating causation and coincidence. Curr Biol 18: R167–R168

    Article  PubMed  CAS  Google Scholar 

  • Roalson EH, Friar EA (2000) Infrageneric classification of Eleocharis (Cyperaceae) revisited: evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Syst Bot 25: 323–336

    Article  Google Scholar 

  • Roalson EH, Hinchliff C (2007) Phylogenetic relationships in Eleocharis R.Br. (Cyperaceae): comparisons with classification, morphology, biogeography, and physiology. In Barbosa LM, dos Santos Jr NA [org.], A Botânica no Brasil: pesquisa, ensino e políticas públicas ambientais. 58º Congresso Nacional de Botânica. Sociedade Botânica do Brasil, Saõ Paulo. Pp. 304–307

    Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytologist 161: 341–370

    Article  CAS  Google Scholar 

  • Sage RF, Li M, Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In Sage RF, Monson RK [eds.], C4 Plant Biology. Academic Press, San Diego, California, USA. pp. 551–584

    Chapter  Google Scholar 

  • Salvucci ME, Bowes G (1981) Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiol 67: 335–340

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Ken JG, Clark LG (2007) Phylogenetic relationships within the clade Centrothecoideae + Panicoideae (Poaceae), based on ndhF and rpl16 intron sequences and structural data. In Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG [eds.], Monocots: Comparative biology and evolution-Poales. Rancho Santa Ana Botanic Garden, Claremont, California, USA. Aliso 23: 487–502

    Google Scholar 

  • Sánchez-Ken JG, Clark LG, Kellogg EA, Kay EE (2007) Reinstatement and emendation of subfamily Micrairoideae (Poaceae). Syst Bot 32: 71–80

    Article  Google Scholar 

  • Simpson DA, Muasya AM, Alves M, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Reznicek AA, Nieuwborg R, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X (2007) Phylogeny of Cyperaceae based on DNA sequence data – a new rbcL analysis. In Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG [eds.], Monocots: Comparative biology and evolution-Poales. Rancho Santa Ana Botanic Garden, Claremont, California, USA. Aliso 23: 72–83

    Google Scholar 

  • Sinha NR, Kellogg EA (1996) Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Amer J Bot 83: 1458–1470

    Article  Google Scholar 

  • Smith JAC, Winter K (1996) Taxonomic distribution of crassulacean acid metabolism. In Winter K, Smith JAC [eds.], Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution, Ecological Studies vol. 114, Springer-Verlag, Berlin. Pp. 427–436

    Chapter  Google Scholar 

  • Soros CL, Bruhl JJ (2000) Multiple evolutionary origins of C4 photosynthesis in the Cyperaceae. In Wilson KL, Morrison DA [eds.], Monocots: Systematics and Evolution. CSIRO, Melbourne, Australia. pp. 629–636

    Google Scholar 

  • Sukuki S, Burnell JN (2003) The pck1 promotor from Urochloa panicoides (a C-4 plant) directs expression differently in rice (a C-3 plant) and maize (a C-4 plant). Plant Sci 165: 603–611

    Article  Google Scholar 

  • Sukuki S, Murai N, Kasaoka K, Hiyoshi T, Imaseki H, Burnell JN, Arai M (2006) Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci 170: 1010–1019

    Article  Google Scholar 

  • Tanaka N, Setoguchi H, Murata J (1997) Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J Plant Res 110: 329–337

    Article  CAS  Google Scholar 

  • Uchino A, Samejima M, Ishii R, Ueno O (1995) Photosynthetic carbon metabolism in an amphibious sedge, Eleocharis balwinii (Torr.) Chapman: modified expression of C4 characteristics under submerged aquatic conditions. Plant Cell Physiol 36: 229–238

    CAS  Google Scholar 

  • Uchino A, Sentoku N, Nemoto K, Ishii R, Samejima M, Matsuoka M (1998) C4-type gene expression is not directly dependent on Kranz anatomy in an amphibious sedge Eleocharis vivipara Link. Plant J 14: 565–572

    Article  CAS  Google Scholar 

  • Ueno O (1996a) Immunocytochemical localization of enzymes involved in the C3 and C4 pathways in the photosynthetic cells of an amphibious sedge, Eleocharis vivipara. Planta 199: 394–403

    CAS  Google Scholar 

  • Ueno O (1996b) Structural characterization of photosynthetic cells in an amphibious sedge, Eleocharis vivipara, in relation to C3 and C4 metabolism. Planta 199: 382–393

    CAS  Google Scholar 

  • Ueno O (1998) Induction of Kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10: 571–583

    PubMed  CAS  Google Scholar 

  • Ueno O (2001) Environmental regulation of C3 and C4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiol 127: 1524–1532

    Article  PubMed  CAS  Google Scholar 

  • Ueno O (2004) Environmental regulation of photosynthetic metabolism in the amphibious sedge Eleocharis baldwinii and comparisons with related species. Plant Cell Environ 27: 627–639

    Article  CAS  Google Scholar 

  • Ueno O, Samejima M (1989) Structural features of NAD-malic enzyme type C4 Eleocharis: an additional report of C4 acid decarboxylation types of the Cyperaceae. Bot Mag Tokyo 102: 393–402

    Article  CAS  Google Scholar 

  • Ueno O, Wakayama M (2004) Cellular expression of C3 and C4 photosynthetic enzymes in the amphibious sedge Eleocharis retroflexa ssp. chaetaria. J Plant Res 117: 433–441

    Article  PubMed  CAS  Google Scholar 

  • Ueno O, Takeda T, Murata T (1986) C4 acid decarboxylating enzyme activities of C4 species possessing different Kranz anatomical types in the Cyperaceae. Photosynthetica 20: 111–116

    CAS  Google Scholar 

  • Ueno O, Samejima M, Muto S, Miyachi S (1988) Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C4 and C3 modes in contrasting environments. Proc Natl Acad Sci 85: 6733–6737

    Article  PubMed  CAS  Google Scholar 

  • Ueno O, Samejima M, Koyama T (1989) Distribution and evolution of C4 syndrome in Eleocharis, a sedge group inhabiting wet and aquatic environments, based on culm anatomy and carbon isotope ratios. Ann Bot 64: 425–438

    Google Scholar 

  • Van den Borre A, Watson L (1994) The infrageneric classification of Eragrostis (Poaceae). Taxon 43: 383–422

    Article  Google Scholar 

  • Van Ginkel LC, Schütz I, Prins HBA (2000) Elodea canadensis under N and CO2 limitation: adaptive changes in Rubisco and PEPCase activity in a bicarbonate user. Phyton (Austria) 40: 133–143

    Google Scholar 

  • Van TK, Haller WT, Bowes G (1976) Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiol 58: 761–768

    Article  PubMed  CAS  Google Scholar 

  • Vicentini A, Barber JC, Aliscioni SA, Giussani LM, Kellogg EA (2008) The age of grasses and clusters of origins of C4 photosynthesis. Glob Change Biol 14: 2963–2977

    Article  Google Scholar 

  • Webb DR, Rattray MR, Brown AMA (1988) A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand. New Zealand J Mar Freshwater Res 22: 231–235

    Article  CAS  Google Scholar 

  • Yano O, Hoshino T (2006) Phylogenetic relationships and chromosomal evolution of Japanese Fimbristylis (Cyperaceae) using nrDNA ITS and ETS 1f sequence data. Acta Phytotax Geobot 57: 205–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Roalson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Roalson, E.H. (2010). Chapter 16 C4 Photosynthesis Origins in the Monocots: A Review and Reanalysis. In: Raghavendra, A., Sage, R. (eds) C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9407-0_16

Download citation

Publish with us

Policies and ethics