Skip to main content

Regulation of the Ascorbate–Glutathione Cycle in Plants Under Drought Stress

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

Acclimation of plants to drought is often associated with increased levels of reactive oxygen species (ROS), such as superoxide anion (O2 · ), hydrogen peroxide (H2O2), hydroxyl radical (HO·) and singlet oxygen (1O2), which are toxic for the cells. ROS are by-products of aerobic metabolism, and their production is enhanced during drought conditions through the disruption of electron transport system and oxidizing metabolic activities occurring in chloroplasts, mitochondria and microbodies. Under non-stressful conditions, ROS are efficiently eliminated by non-enzymatic and enzymatic antioxidants, whereas during drought conditions the production of ROS exceeds the capacity of the antioxidative systems to remove them, causing oxidative stress. The non-enzymatic antioxidant system includes ascorbate and glutathione, located both within the cell and in the apoplast. They are two constituents of the antioxidative ascorbate–glutathione cycle which detoxify H2O2 in the chloroplasts. Ascorbate (AsA) is a major primary antioxidant compound synthesized on the inner membrane of the mitochondria which reacts chemically with 1O2, O2·, HO· and thiyl radical, and acts as the natural substrate of many plant peroxidases. Moreover, AsA is involved in other functions such as plant growth, gene regulation, modulation of some enzymes, and redox regulation of membrane-bound antioxidant compounds. Glutathione (GSH) is a tripeptide synthesized in the cytosol and chloroplasts which scavenges 1O2 and H2O2, and it is oxidized to glutathione disulfide (GSSG) when acts as an antioxidant and redox regulator. GSH is the substrate of glutathione S-transferases, which have a protective role in the detoxification of xenobiotics, and dehydroascorbate reductase (DHAR). Finally, GSH is a precursor of phytochelatins, which regulate cellular heavy metals levels, and is involved in gene expression. This review, based on the most significant studies published in the last decade, focuses on the changes of antioxidant enzyme activities (ascorbate peroxidase, APX; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione reductase, GR), and of the levels of some compounds involved in the ascorbate–glutathione cycle (ascorbate and glutathione pools, H2O2 and α-tocopherol) in plants grown under water shortage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aroca R, Irigoyen JJ, Sánchez-Díaz M (2003) Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117:540–549

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Bartoli CG, Guiamet JJ, Kiddle G, Pastori GM, Di Cagno R, Theodoulou FL, Foyer CH (2005) Ascorbate content of wheat leaves is not determined by maximal L-galactono-1, 4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ 28:1073–1081

    CAS  Google Scholar 

  • Bermejo R, Irigoyen JJ, Santamaría JM (2006) Short-term drought response of two white clover clones, sensitive and tolerant to O3. Physiol Plant 127:658–669

    CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166:1207–1217

    PubMed  CAS  Google Scholar 

  • Bian S, Jiang Y (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recover. Sci Hort 120:264–270

    CAS  Google Scholar 

  • Briviba K, Klotz LO, Sies H (1997) Toxic and signalling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 378:1259–65

    PubMed  CAS  Google Scholar 

  • Broin M, Cuiné S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248

    PubMed  CAS  Google Scholar 

  • Chai TT, Fadzillah NM, Kusnan M, Mahmood M (2005) Water stress-induced oxidative damage and antioxidant responses in micropropagated banana plantlets. Biol Plant 49:153–156

    CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Contour-Ansel D, Torres-Franklin ML, Cruz De Carvalho MH, D’Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cdnas, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    PubMed  CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46:95–108

    CAS  Google Scholar 

  • Desikan R, Cheung K, Clarke A, Goulding S, Sagi M, Fluhr R, Rock C, Hancock JT, Neill SJ (2004) Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum. Funct Plant Biol 31:913–920

    CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Sharifi M (2009) Alleviation of water deficit stress effects by foliar application of ascorbic acid on Zea mays L. J Agron Crop Sci 195:347–355

    CAS  Google Scholar 

  • Duan B, Yanwei L, Chunying Y, Olavi J, Chunyang L (2005) Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiol Plant 124:476–484

    CAS  Google Scholar 

  • Edjolo A, Laffray D, Guerrier G (2001) The ascorbate-glutathione cycle in the cytosolic and chloroplastic fractions of drought-tolerant and drought-sensitive poplars. J Plant Physiol 158:1511–1517

    CAS  Google Scholar 

  • Egert M, Tevini M (2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ Exp Bot 48:43–49

    CAS  Google Scholar 

  • Ennajeh M, Vadel AM, Khemira H (2009) Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit. Acta Physiol Plant 31:711–721

    CAS  Google Scholar 

  • Foyer CH, Gomez LD, Van Heerdern PDR (2005) Glutathione. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 53–66

    Google Scholar 

  • Foyer CH, Mullineaux PM (1998) The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues. FEBS Lett 425:528–529

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–492

    PubMed  CAS  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Google Scholar 

  • Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC (2009) Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 9:2503–2528

    PubMed  CAS  Google Scholar 

  • Guerfel M, Ouni Y, Boujnah D, Zarrouk M (2009) Photosynthesis parameters and activities of enzymes of oxidative stress in two young ‘Chemlali’ and ‘Chetoui’ olive trees under water deficit. Photosynthetica 47:340–346

    CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Remorini D, Massai R, Tattini M (2008) Interactions of water stress and solar irradiance on the physiology and biochemistry of Ligustrum vulgare. Tree Physiol 28:873–883

    PubMed  CAS  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    PubMed  CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    PubMed  CAS  Google Scholar 

  • Haberer K, Herbinger K, Alexou M, Rennenberg H, Tausz M (2008) Effects of drought and canopy ozone exposure on antioxidants in fine roots of mature European beech (Fagus sylvatica). Tree Physiol 28:713–719

    PubMed  CAS  Google Scholar 

  • Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    PubMed  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    PubMed  CAS  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloid Surf B 60:201–206

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Sridharan R, Panneerselvam R (2008a) Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloid Surf B 62:312–318

    CAS  Google Scholar 

  • Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R (2008b) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloid Surf B 62:105–111

    CAS  Google Scholar 

  • Jin J, Shan N, Ma N, Bai J, Gao J (2006) Regulation of ascorbate peroxidase at the transcript level is involved in tolerance to postharvest water deficit stress in the cut rose (Rosa hybrida L.) cv. Samantha. Postharvest Biol Tec 40:236–243

    CAS  Google Scholar 

  • Jung S (2004) Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci 166:459–466

    CAS  Google Scholar 

  • Kele Y, Öncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    Google Scholar 

  • Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    PubMed  CAS  Google Scholar 

  • Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    CAS  Google Scholar 

  • Li YJ, Hai RL, Du XH, Jiang XN, Lu H (2009) Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed 128:404–410

    CAS  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    CAS  Google Scholar 

  • Liu ZJ, Zhang XL, Bai JG, Suo BX, Xu PL, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hort 121:138–143

    CAS  Google Scholar 

  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 250–267

    Google Scholar 

  • Lu P, Sang WG, Ma1 KP (2007) Activity of Stress-related antioxidative enzymes in the invasive plant crofton weed (Eupatorium adenophorum). J Integr Plant Biol 49:1555–1564

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloid Surf B 57:69–74

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008) Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. CR Biol 331:418–425

    CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    PubMed  CAS  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206

    PubMed  CAS  Google Scholar 

  • Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001) Living under a ‘dormant’ canopy: a molecular acclimation mechanism of the desert plant Retama raetam. Plant J 25:407–416

    PubMed  CAS  Google Scholar 

  • Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 87–100

    Google Scholar 

  • Morales F, Abadía A, Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams WW III, Matoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment, advances in photosynthesis and respiration. Springer, The Netherlands, pp 65–85

    Google Scholar 

  • Morell S, Follmann H, De Tullio M, Häberlein I (1997) Dehydroascorbate and dehydroascorbate rediuctase are phantom indicators of oxidative stress in plants. FEBS Lett 414:567–570

    PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Mueller M, Schwarz K, Alegre L (2001) Diterpenes and antioxidative protection in drought-stressed Salvia officinalis plants. J Plant Physiol 158:1431–1437

    Google Scholar 

  • Munné-Bosch S, Peñuelas J (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci 166:1105–1110

    Google Scholar 

  • Nasibi F, Kalantari KM (2009) Influence of nitric oxide in protection of tomato seedling against oxidative stress induced by osmotic stress. Acta Physiol Plant 31:1037–1044

    CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–729

    PubMed  CAS  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492

    CAS  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants. Academic, San Diego, CA, pp 1–7

    Google Scholar 

  • Pinheiro HA, DaMatt FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci 167:1307–1314

    CAS  Google Scholar 

  • Posch S, Bennett LT (2009) Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol 11:83–93

    PubMed  CAS  Google Scholar 

  • Pukacka S, Ratajczak E (2006) Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J Plant Physiol 163:1259–1266

    PubMed  CAS  Google Scholar 

  • Qiu ZB, Liu X, Tian XJ, Yue M (2008) Effects of CO2 laser pretreatment on drought stress resistance in wheat. J Photochem Photobiol B 90:17–25

    PubMed  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molucule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    PubMed  CAS  Google Scholar 

  • Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143

    PubMed  CAS  Google Scholar 

  • Ratnayaka HH, Molin WT, Sterling TM (2003) Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought. J Exp Bot 54:2293–22305

    PubMed  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Jutur PP, Sumithra K (2004a) Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot 52:33–42

    CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004b) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Ren J, Dai W, Xuan Z, Yao Y, Korpelainen H, Li C (2007) The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. Forest Ecol Manag 239:112–119

    Google Scholar 

  • Riekert van Heerden PD, Krüger GHJ (2002) Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J Plant Physiol 159:1077–1086

    Google Scholar 

  • Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–821

    PubMed  CAS  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2001) Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. J Agron Crop Sci 186:63–70

    CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomics approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76:199–219

    Google Scholar 

  • Sánchez-Díaz M, Tapia C, Antolín MC (2007) Drought-induced oxidative stress in Canarian laurel forest tree species growing under controlled conditions. Tree Physiol 27:1415–1422

    PubMed  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloid Surf B 60:229–235

    CAS  Google Scholar 

  • Scebba F, Sebastiani L, Vitagliano C (2001) Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves. Biol Plant 44:41–46

    CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa KI, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51

    PubMed  CAS  Google Scholar 

  • Shvaleva AL, Silva FCE, Breia E, Jouve L, Hausman JF, Almeida MH, Maroco JP, Rodrigues ML, Pereira JS, Chaves MM (2005) Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiol 26:239–248

    Google Scholar 

  • Šircelj H, Tausz M, Grill D, Batiĉ F (2005) Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. J Plant Physiol 162:1308–1318

    PubMed  Google Scholar 

  • Šircelj H, Tausz M, Grill D, Batič F (2007) Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Sci Hortic – Amsterdam 113:362–369

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic cid in plants. Ann Bot 78:661–669

    CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotech 9:214–219

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 53–66

    Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302

    CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2005a) Antioxidant defenses in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol 32:45–53

    CAS  Google Scholar 

  • Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005b) Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169:403–412

    CAS  Google Scholar 

  • Sofo A, Dichio B, Montanaro G, Xiloyannis C (2009) Shade effect on photosynthesis and photoinhibition during drought and rewatering. Agric Water Manage 96:1201–1206

    Google Scholar 

  • Srivalli B, Sharma G, Khanna-Chopra R (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–512

    CAS  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (1997) Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Mol Biol 35:641–654

    PubMed  CAS  Google Scholar 

  • Synková H, Valcke R (2001) Response to mild water stress in transgenic Pssu-ipt tobacco. Physiol Plant 112:513–23

    PubMed  Google Scholar 

  • Tahkokorpi M, Taulavuori K, Laine K, Taulavuori E (2007) After-effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ Exp Bot 61:85–93

    CAS  Google Scholar 

  • Tamaoki M, Matsuyama T, Nakajima N, Aono M, Kubo A, Saji H (2004) A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Environ Pollut 131:137–145

    PubMed  CAS  Google Scholar 

  • Tausz M, Wonisch A, Peters J, Jiménez MS, Morales D, Grill D (2001) Short-term changes in free radical scavengers and chloroplast pigments in Pinus canariensis needles as affected by mild drought stress. J Plant Physiol 158:213–219

    CAS  Google Scholar 

  • Tian XR, Lei YB (2007) Physiological responses of wheat seedlings to drought and UV-B radiation.Effect of exogenous sodium nitroprusside application. Russ J Plant Physl 54:676–682

    CAS  Google Scholar 

  • Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165:514–521

    PubMed  CAS  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase and dehydroascorbate reductase are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    PubMed  CAS  Google Scholar 

  • Van Breusegem F, Vranovà E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Bioch 47:570–577

    CAS  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 16:1101–1110

    Google Scholar 

  • Yang XD, Dong CJ, Liu JY (2006) A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity. Plant Mol Biol 62:951–962

    PubMed  CAS  Google Scholar 

  • Yang Y, Han C, Liu Q, Lin B, Wang J (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    CAS  Google Scholar 

  • Zabalza A, Gálvez L, Marino D, Royuela M, Arrese-Igor C, González EM (2008) The application of ascorbate or its immediate precursor, galactono-1, 4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress. J Plant Physiol 165:805–812

    PubMed  CAS  Google Scholar 

  • Zhang J, Kirkkham MB (1996a) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    CAS  Google Scholar 

  • Zhang J, Kirkkham MB (1996b) Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci 113:139–147

    CAS  Google Scholar 

  • Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W, Zhou B (2009) Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32:509–519

    PubMed  Google Scholar 

  • Zhu Z, Liang Z, Han R (2009) Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. plants. Environ Exp Bot 66:326–333

    CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Prof. Cristos Xiloyannis for his important suggestions and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Sofo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sofo, A., Cicco, N., Paraggio, M., Scopa, A. (2010). Regulation of the Ascorbate–Glutathione Cycle in Plants Under Drought Stress. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_5

Download citation

Publish with us

Policies and ethics