Skip to main content

Ascorbate and Glutathione in Organogenesis, Regeneration and Differentiation in Plant In vitro Cultures

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

The prerequisite for shoot, root or somatic embryo formation in plant in vitro culture is the development of meristem from dedifferentiated cells of the explant tissue. Auxin and cytokinin levels and their relative ratios play a decisive role in inducing the morphogenetic pathways leading to shoot, root or somatic embryo formation in plant in vitro cultures. Exogenous auxin is required to maintain the high rate of an unorganised growth in plant cell suspension cultures. On the other hand, the proliferation of hairy root cultures is usually dependent on endogenous hormonal factors. Auxin and cytokinin execute their regulatory role by being involved in a cross-talk with numerous endogenous factors affecting cell division and differentiation. Among them, ascorbate/dehydroascorbate (ASC/DHA), glutathione/glutathione disulphide (GSH/GSSG) redox pair, H2O2 and other components of cellular redox systems play an important role in triggering developmental responses in plant in vitro culture. Ascorbate, glutathione and related enzymes participate in the responses to auxin/cytokinin treatments. In addition, they can even directly affect hormone metabolism in tissue. Ascorbate and glutathione have important regulatory roles in the process of cell-cycle progression within the meristems, where they participate in redox-dependent determination of proliferation and quiescence patterns. The mechanism underlying the regulatory effects of ascorbate and glutathione in cell divisions is not fully elucidated; however, it seems to be related to the regulation of nucleotide synthesis. Ascorbate ­levels in apoplast modulate the rate of organ elongation by increasing cell wall extensibility. Besides the effects on cell proliferation and growth, ascorbate and glutathione concentrations as well as the enzymes of their metabolism protect the in vitro cultured tissues against oxidative stress. This function is of particular importance during root regeneration and the elicitation of metabolite production by hairy root cultures, where increased levels of oxidising agents are often required to stimulate both processes. In this review, we report recent studies on the involvement of ascorbate and glutathione in the processes of regeneration and proliferation in plant tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MB, Thanh NT, Yu K-W, Hanh E-J, Paek K-Y, Lee HL (2005a) Induction in the antioxidative systems and lipid peroxidation in suspension culture roots of Panax ginseng induced by oxygen in bioreactors. Plant Sci 169:833–841

    Article  CAS  Google Scholar 

  • Ali MB, Yu K-W, Hanh E-J, Paek K-Y (2005b) Differential responses of anti-oxidants enzymes, lipooxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng C.A. Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Sci 169:83–92

    Article  CAS  Google Scholar 

  • Arrigoni O (1994) Ascorbate system in plant development. J Bioenerg Biomem 26:407–419

    Article  CAS  Google Scholar 

  • Arrigoni O, De Tullio MC (2000) The role of ascorbic acid in cell metabolism: between gene – directed functions and unpredictable chemical reactions. J Plant Physiol 157:481–488

    Article  CAS  Google Scholar 

  • Asard H, Horemans N, Caubergs RJ (1995) Involvement of ascorbic acid and b-type cytochrome in plant plasma membrane redox reactions. Protoplasma 184:36–34

    Article  CAS  Google Scholar 

  • Belmonte MF, Donald G, Reid DM, Yeung EC, Stasolla C (2005a) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MF, Stasolla C (2007) Application of DL-buthionine-[S, R]-sulfoximine deplete cellular glutathione and improve white spruce (Picea glauca) somatic embryo development. Plant Cell Rep 26:517–523

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MF, Stasolla C (2009) Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem 47:904–911

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MF, Stasolla C, Katahira R, Loukanina N, Yeung EC, Thorpe TA (2005b) Glutathione – induced growth of embryogenic tissue of white spruce correlates with changes in pyrimidine nucleotide metabolism. Plant Sci 168:803–812

    Article  CAS  Google Scholar 

  • Belmonte MF, Stasolla C, Loukanina N, Yeung EC, Thorpe TA (2003) Glutathione modulation of purine metabolism in cultured white spruce embryogenic tissue. Plant Sci 165:1377–1385

    Article  CAS  Google Scholar 

  • Belmonte MF, Tahir M, Schroeder D, Stasolla C (2007) Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J Exp Bot 58:2851–2861

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MF, Yeung EC (2004) The effects of reduced and oxidized glutathione on white spruce somatic embryogenesis. In Vitro Cell Dev Biol Plant 40:62–66

    Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichman T, Seifertiva D, Jurgens D, Friml J (2003) Local, efflux – dependent gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bilolu I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsisroots. Nature 433:39-44

    Article  CAS  Google Scholar 

  • Bonke M, Tähtiharju S, Helariutta Y (2005) Lessons from the shoot apex. In: Fleming AJ (ed) Intercellular communication in plants. Blackwell Publishing, Oxford, pp 199–224

    Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone – free medium. Plant Cell Rep 17:544–551

    Article  CAS  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE (2004) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones. Biosynthesis, signal transduction, action. Kluwer, Dordrecht/Boston/London, pp 204–220

    Google Scholar 

  • Córdoba F, Gonzales-Reyes JA (1994) Ascorbate and plant cell growth. J Bioenerg Biomembr 26:399–405

    Article  PubMed  Google Scholar 

  • Córdoba-Pedregosa MC, González-Reyes JA, Cañadillas MS, Navas P, Córdoba F (1996) Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol 112:1119–1125

    PubMed  Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening.A look backwards and forwards. Plant Physiol 125:131–134

    Article  PubMed  CAS  Google Scholar 

  • De Pinto MC, Francis D, De Gara L (1999) The redox state of the scorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Article  PubMed  Google Scholar 

  • De Pinto MC, Tommasi F, De Gara L (2000) Enzymes of the ascorbate biosynthesis and ascorbate–glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol Biochem 38:541–550

    Article  Google Scholar 

  • De Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–69

    Article  PubMed  CAS  Google Scholar 

  • De Tullio MC, Ciraci S, Liso R, Arrigoni O (2007) Ascorbic acid oxidase is dynamically regulated by light and oxygen. A tool for oxygen management in plants? J Plant Physiol 164:39–46

    Article  PubMed  CAS  Google Scholar 

  • De Tullio MC, Paciolla C, Vecchia FD, Rascio N, D’Emerico S, De Gara L, Liso R, Arrigoni O (1999) Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. Planta 209:424–434

    Article  PubMed  Google Scholar 

  • Dong JG, Fernández-Maculet JC, Yang SF (1992) Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA 89:9789–9793

    Article  PubMed  CAS  Google Scholar 

  • Dutta Gupta S, Datta S (2003) Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant 47:179–183

    Article  Google Scholar 

  • Esaka M, Fujisawa K, Goto M, Kisu Y (1992) Regulation of ascorbate oxidase expression by auxin and copper. Plant Physiol 100:231–237

    Article  PubMed  CAS  Google Scholar 

  • Fiers M, Ku KL, Liu C-M (2007) CLE peptide ligands and their roles in establishing meristems. Curr Opin Plant Biol 10:39–43

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1992) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    Google Scholar 

  • Gaspard Th, Penel C, Greppin H (1997) Do rooting induction and flowering evocation involve a similar interplay between indoleacetic acid, putrescine and peroxidases? In: Greppin H, Penel C, Simon P (ed.), Travelling shot on plant development, University of Geneva, Geneve, Switzerland, pp 35–50

    Google Scholar 

  • Golz JF (2005) Lessons from vegetative shoot apex. In: Fleming AJ (ed) Intercellular communication in plants. Blackwell, Oxford, pp 199–224

    Google Scholar 

  • Gonzales-Reyes JA, Döring O, Navas P, Obst G, Böttger M (1992) The effect of ascorbate free radical on the energy state of the plasma membrane of onion (Allium cepa L.) root cells: alteration of K+ efflux by ascorbate? Biochim Biophys Acta 1098:177–183

    Article  Google Scholar 

  • Green MA, Fry SC (2005a) Vitamin C degradation in plants via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–88

    Article  PubMed  CAS  Google Scholar 

  • Green MA, Fry SC (2005b) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the cell wall. Plant Biosyst 139:2–7

    Article  Google Scholar 

  • Guillon S, Trémouillaux-Guiller PPK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  PubMed  CAS  Google Scholar 

  • Gujarathi NP, Haney BJ, Park HJ, Wickramasinghe SR, Linden JC (2005) Hairy roots of Helianhus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnol Prog 21:775–780

    Article  PubMed  CAS  Google Scholar 

  • Henmi K, Tsuboi S, Demura T, Fukuda H, Iwabuchi M, Ogawa K (2001) A possible role of glutathione and glutathione disulphide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol 42:673–676

    Article  PubMed  CAS  Google Scholar 

  • Hjortswang HI, Sundås-Larsson A, Bharathan G, Bozkhov PV, von Arnold S, Vahala T (2002) KNOTTED1-like homeobox genes of gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol Biochem 40:837–843

    Article  CAS  Google Scholar 

  • Horemans N, Foyer CH, Potters G, Asard H (2000) Ascorbate function and associated transport systems in plants. Plant Physiol Biochem 38:531–540

    Article  CAS  Google Scholar 

  • Huerta-Heredia A, Marín-Lopez R, Ponce-Noyola Cerda-García-Rojas CM, Trejo-Tapia G, Ramos-Valdivia AC (2009) Oxidative stress induces alkaloid production in Uncaria tomentosa root and cell cultures in bioreactors. Eng Life Sci 9:211–218

    Article  CAS  Google Scholar 

  • Imin N, Nizamidin M, Wu T, Rolfe BG (2007) Factors involved in root formation in Medicago truncatula J Exp Bot 58:439–451

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Ballinger T, Li D, Zhang S, Feldman LJ (2006) A role for mitochondria in the establishment and maintenance of the maize root quiescent center. Plant Physiol 140:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. R Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Joy RW, Patel KR, Thorpe TA (1988) Ascorbic acid enhancement of organogenesis in tobacco callus. Plant Cell Tiss Org Cult 13:219–228

    Article  CAS  Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, mGengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16

    Article  Google Scholar 

  • Kato N, Esaka M (1996) cDNA cloning and gene expression of ascorbate oxidase in tobacco. Plant Mol Biol 30:833–837

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    Article  CAS  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and the maintenance of the quiescent center: implications for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in a root distal meristem. Plant Physiol 112:925–932

    Article  Google Scholar 

  • Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113:677–683

    Article  PubMed  CAS  Google Scholar 

  • Kreuger M, van Holst G-J (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248

    Article  CAS  Google Scholar 

  • Li S, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180

    Article  CAS  Google Scholar 

  • Li S, Xue L, Xu S, Feng H, An L (2009a) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71

    Article  CAS  Google Scholar 

  • Li S, Xue L, Xu S, Feng H, An L (2009b) IBA-induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: The role of H2O2. Environ Exp Bot 66:442–450

    Article  CAS  Google Scholar 

  • Liao W, Xiao H, Zhang M (2009) Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Phys Plant 31:1279–1289

    Article  CAS  Google Scholar 

  • Lin LS, Varner JE (1991) Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.). Plant Physiol 96:159–165

    Article  PubMed  CAS  Google Scholar 

  • Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984) Relationship between ascorbic acid and cell division. Exp Cell Res 150:314–20

    Article  PubMed  CAS  Google Scholar 

  • Liso R, Innocenti AM, Bitonti MB, Arrigoni O (1988) Ascorbic acid induced progression of quiescent centre cells from G1 to S phase. New Phytol 110:469–471

    Article  CAS  Google Scholar 

  • Liso R, De Tullio MC, Ciraci S, Balestrini R, La Rocca N, Bruno L, Chiappetta A, Bitonti MB, Bonfante P, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Yalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O -2 , H2O2 and ·OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 135:3114–3123

    Article  Google Scholar 

  • Liu X, Shiomi S, Nakatsuka A, Kubo Y, Nakamura R, Inaba A (1999) Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiol 121:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Lopéz-Carbonell M, Munné-Bosch S, Alegre L (2006) The ascorbate-deficient vtc-1 Arabidopsis mutant shows altered ABA accumulation in leaves and chloroplast. J Plant Growth Regul 25:137–144

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Verticnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  • Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126:469–481

    PubMed  CAS  Google Scholar 

  • Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle activity. Plant J 30:203–212

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Schoof H, Haecker A, Jürgens G, Laux T (1998) Role of ZWILLE gene in the regulation of central shhot meristem cell fate during Arabidopsis embryogenesis. EMBO J 17:1799–1899

    Article  PubMed  CAS  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult 90:1–8

    Article  CAS  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, Mackerness S, Buchanan-Wollaston V (2003) Expression of cenescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Matsumoto S, Masuda K, Inoue M (1998) Reduced glutatione promotes callus growth and shoot development in a shoot tip culture of apple root stock M26. Plant Cell Rep 17:597–600

    Article  CAS  Google Scholar 

  • Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of Glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity and flowering. Plant Cell Physiol 45:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Tasaka Y, Mino M, Tanaka Y, Iwabuchi M (2001) Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol 42:524–530

    Article  PubMed  CAS  Google Scholar 

  • Ohtani M, Sugiyama M (2005) Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. Plant J 43:479–490

    Article  PubMed  CAS  Google Scholar 

  • Ozawa S, Tasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142

    PubMed  CAS  Google Scholar 

  • Padu E (1999) Apoplastic peroxidases, ascorbate and lignification in relation to nitrate supply in wheat stem. J Plant Physiol 154:576–583

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Pal Singh H, Kaur S, Batish DR, Kohli RK (2009) Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regul 57:21–30

    Article  CAS  Google Scholar 

  • Pellny TK, Locato V, Vivancos PD, Markovic J, De Gara L, Pallardó FV, Foyer CH (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Mol Plant 2:442–456

    Article  PubMed  CAS  Google Scholar 

  • Philips GC (2004) In vitro morphogenesis in plants – recent advances. In Vitro Cell Dev Biol Plant 40:342–345

    Article  CAS  Google Scholar 

  • Pignocchi C, Flether JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141:423–435

    Article  PubMed  CAS  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent mechanism. Plant Physiol 134:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Horemans N, Caubergs RJ, Asard H (2000) Ascorbate and dehydroascorbate influence cell cycle progression in tobacco cell suspension. Plant Physiol 124:17–20

    Article  PubMed  CAS  Google Scholar 

  • Razdan MK (2003) Somatic embryogenesis. In: Razdan MK (ed) Introduction to plant tissue culture, 2nd edn. Science Publishers Inc., Enfield, USA, pp 71–86

    Google Scholar 

  • Sánchez M, Queijeiro E, Revilla G, Zarra I (1997) Changes in ascorbic acid levels in apoplastic fluid during growth of pine hypocotyls. Effect of peroxidase activities associated with cell walls. Physiol Plant 101:815–820

    Article  Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  PubMed  Google Scholar 

  • Schopfer P (2002) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide and hydroxyl radicals) and peroxidases in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  • Stasolla C, Belmonte MF, Tahir M, Elhiti M, Khamiss K, Joosen R, Maliepaard C, Sharpe A, Gjetvaj B, Boutilier K (2008) Buthionine sulphoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism meristem development and embryo maturation. Planta 228:255–272

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Belmonte MF, van Zyl L, Craig DL, Liu W, Yeung EC, Sederoff RR (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe T (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (1999) Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell Dev Biol Plant 35:316–319

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2001) Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol Plant 111:196–205

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2007) Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos. Plant Physiol Biochem 45:188–198

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M (2000) Genetic analysis of plant morphogenesis in vitro. Int Rev Cytol 196:67–84

    Article  PubMed  CAS  Google Scholar 

  • Sundås-Larsson A, Svenson M, Liao H, Engström P (1998) A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proc Natl Acad Sci USA 95:15118–15122

    Article  PubMed  Google Scholar 

  • Synková H, Semorádová Š, Burketová L (2004) High content of endogenous cytokinin stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plan Cell Tissue Organ Cult 79:169–179

    Article  Google Scholar 

  • Synková H, Semorádová Š, Schnablová R, Witters E, Hušák E, Valcke R (2006) Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol Plant 50:31–41

    Article  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidases-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387

    CAS  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones-roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tao L, Cheung AY, Wu H (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Hahn E-J, Paek K-T (2008) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep 27:563–573

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Lee SY, Hahn E-J, Paek K-T (2007) Temporal changes in the growth, saponin content and antioxidant defense in the adventitious roots of Panax ginseng subjected to nitric acid elicitation. Plant Biotech Rep 1:227–235

    Article  Google Scholar 

  • Tian M, Gu Q, Zhu M (2003) The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci 165:701–707

    Article  CAS  Google Scholar 

  • Tian M, Han N, Bian HW, Zhu M (2004) The possible relationship between the regeneration capacity and reactive oxygen species in the strawberry calli. Acta Hort Sin 31:372–374

    Google Scholar 

  • Tyburski J, Jasionowicz P, Tretyn A (2006) The effects of ascorbate on root regeneration in seedling cuttings of tomato. Plant Growth Regul 48:157–173

    Article  CAS  Google Scholar 

  • Tyburski J, Krzemiński Ł, Tretyn A (2008) Exogenous auxin affects ascorbate metabolism in roots of tomato seedlings. Plant Growth Regul 54:203–215

    Article  CAS  Google Scholar 

  • Tyburski J, Tretyn A (2010) Glutathione and glutathione disulphide affect adventitious root formation and growth in tomato seedling cuttings. Acta Phys Plant 32:411–417

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld J-P, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS 1/CADMIUM SENSITIVE 2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    PubMed  CAS  Google Scholar 

  • Visser EJW, Heijink CJ, van Hout JGM, Voesenek LACJ, Barendse GWM, Blom CWPM (1995) Regulatory role of auxin in adventitious root formation in two species of Rumex, differing in their sensitivity to waterlogging. Physiol Plant 93:116–122

    Article  CAS  Google Scholar 

  • Warren G (1993) The regeneration of plants from cultured cells and tissues. In: Stafford A, Warren G (eds) Plant cell and tissue culture. Wiley, New York, pp 82–100

    Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M, Mino M, Iwabuchi M, Ogawa K (2004) Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol 45:129–137

    Article  PubMed  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Lopez-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-Garcia C, Vargas-Suares M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Su YH, Cheng ZJ, Zhang XS (2008) Cell fate switch during in vitro plant organogenesis. J Int Plant Biol 50:816–824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Tyburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tyburski, J., Tretyn, A. (2010). Ascorbate and Glutathione in Organogenesis, Regeneration and Differentiation in Plant In vitro Cultures. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_2

Download citation

Publish with us

Policies and ethics