Skip to main content

Identification of Potential Gene Targets for the Improvement of Ascorbate Contents of Genetically Modified Plants

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

Up to half of the ∼6.8 billion people living on planet earth live on less than $3 a day and also suffer from at least one micronutrient deficiency especially in Africa and Southeast Asia. Human lacks the capacity to synthesize vitamin C (ascorbic acid) and its deficiency causes scurvy. As excess vitamin C cannot be stored in the human’s body, there is the need to regularly consume fruits and vegetables to supply this essential compound. In plants, it is multifunctional and indispensable. Overexpression of heterogonous genes to introduce novel traits into plants offers an effective way to increase the vitamin content of crops. Although many alternative biosynthesis routes for vitamin C have been proposed, the Smirnoff–Wheeler (l-galactose) pathway has been proven to be the functional pathway in Arabidopsis and many other fruit-bearing plants. Identifying limiting genes in the biosynthesis pathways and overexpression of such genes severally and collectively as well as in combination with genes from ascorbate recycling pathway may lead to the generation of transgenic plants with ‘substantial’ amount of vitamin C for both human nutrition leading to reduced ‘hidden hunger’ and agronomic purposes. Proper dissemination of scientifically proven safety information about such transgenic plants will also increase public confidence in selecting and consuming such nutritionally enhanced genetically modified food crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by over-expression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    PubMed  CAS  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    PubMed  CAS  Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Badejo AA, Jeong ST, Goto-Yamamoto N, Esaka M (2007) Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. Plant Physiol Biochem 45:665–672

    PubMed  CAS  Google Scholar 

  • Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49:126–132

    PubMed  CAS  Google Scholar 

  • Badejo AA, Fujikawa Y, Esaka M (2009a) Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra). J Plant Physiol 166:652–660

    PubMed  CAS  Google Scholar 

  • Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009b) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50:423–428

    PubMed  CAS  Google Scholar 

  • Badejo AA, Eltelib HA, Fujikawa Y, Esaka M (2009c) Genetic manipulation for enhancing vitamin C content in tobacco expressing acerola (Malpighia glabra) GDP-L-galactose phosphorylase gene. Hort Environ Biotech 50:329–333

    CAS  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer GM (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    PubMed  CAS  Google Scholar 

  • Bewley JD, Burton RA, Morohashi Y, Fincher GB (1997) Molecular cloning of a cDNA encoding a (1→4)-β-mannan endohydrolase from the seeds of germinated tomato (Lycopersicon esculentum). Planta 203:454–459

    PubMed  CAS  Google Scholar 

  • Bhalla PL, Smith N (1998) Agrobacterium tumefaciens-mediated transformation of Australian cultivars of cauliflowers, Brassica oleracea var. botrytis. Mol Breed 4:531–541

    CAS  Google Scholar 

  • Bhalla PL (2006) Genetic engineering of wheat – current challenges and opportunities. Trends Biotech 24:305–311

    CAS  Google Scholar 

  • Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ (2001) Futile transmembrane NH +4 cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    PubMed  CAS  Google Scholar 

  • Bonin CP, Potter I, Vanzin GF, Reiter WD (1997) The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci USA 94:2085–2090

    PubMed  CAS  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    PubMed  CAS  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schunemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    PubMed  CAS  Google Scholar 

  • Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182:1271–1272

    PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S, Gallie DR (2003) Increased vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signalling and stomatal movement. Plant Cell 16:1143–1162

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    PubMed  CAS  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24:383–394

    CAS  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203

    PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    PubMed  CAS  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    PubMed  CAS  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-Galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    PubMed  CAS  Google Scholar 

  • Conner A, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Plant J 33:19–46

    PubMed  Google Scholar 

  • Coulin F, Magnenat E, Proudfoot AEI, Payton MA, Scully P, Wells TNC (1993) Identification of Cys-150 in the active site of phosphomannose isomerase from Candida albicans. Biochemistry 32:14139–14144

    PubMed  CAS  Google Scholar 

  • Dale PJ (1993) The release of transgenic crops into agriculture. J Agric Sci Camb 120:1–5

    Google Scholar 

  • Davey MW, Gilot C, Persiau G, Ostergaard J, Han Y, Bauw GC, Van Montagu MC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121:535–543

    PubMed  CAS  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    CAS  Google Scholar 

  • Diaz de la Garza RI, Gregory JF III, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 104:4218–4222

    PubMed  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    PubMed  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    PubMed  CAS  Google Scholar 

  • Eskling M, Arvidsson P, Akerlund HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    CAS  Google Scholar 

  • FAO (2006) State of food insecurity in the world. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC Press, Boca Raton, FL, pp 31–58

    Google Scholar 

  • Foyer CH, Rowell J, Walker D (1983) Measurements of the ascorbate concentration of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244

    CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert K, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    PubMed  CAS  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005) Agrobacterium tumefaciens -mediated sorghum transformation using a mannose selection system. Plant Biotech J 3:591–599

    CAS  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J 30:541–553

    PubMed  CAS  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3, 5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    PubMed  CAS  Google Scholar 

  • Hancock RD, Viola R (2005a) Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities. J Agric Food Chem 53:5248–5257

    PubMed  CAS  Google Scholar 

  • Hancock RD, Viola R (2005b) Biosynthesis and catabolism of L-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188

    CAS  Google Scholar 

  • Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007) L-ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. Funct Plant Biol 34:1080–1091

    CAS  Google Scholar 

  • Herbers K (2003) Vitamin production in transgenic plants. J Plant Physiol 160:821–829

    PubMed  CAS  Google Scholar 

  • Herman EM, Helm RM, Jung J, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43

    PubMed  CAS  Google Scholar 

  • Hoeberichts FA, Vaeck E, Kiddle G, Coppens E, van de Cotte B, Adamantidis A, Ormenese S, Foyer CH, Zabeau M, Inze D, Perilleux C, Van Breusegem F, Vuylsteke M (2008) A temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death. J Biol Chem 283:5708–57018

    PubMed  CAS  Google Scholar 

  • Huh WK, Lee BH, Kim ST, Kim YR, Rhie GE, Baek YW, Hwang CS, Lee JS, Kang SO (1998) D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol Microbiol 30:895–903

    PubMed  CAS  Google Scholar 

  • Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchia T (2009) L-ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiol Plant 136:139–149

    PubMed  CAS  Google Scholar 

  • Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Harai M (1998) L-galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    CAS  Google Scholar 

  • Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S (2008) The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis. J Biol Chem 283:31133–1141

    PubMed  CAS  Google Scholar 

  • Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    CAS  Google Scholar 

  • Jeong J, Guerinot ML (2008) Biofortified and bioavailable: the gold standard for plant-based diets. Proc Natl Acad Sci USA 105:1777–1778

    PubMed  CAS  Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    CAS  Google Scholar 

  • Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    PubMed  CAS  Google Scholar 

  • Keller R, Springer F, Renz A, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    PubMed  CAS  Google Scholar 

  • Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Barraclough D, MacRae E (2004) A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci USA 101:16976–16981

    PubMed  CAS  Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539

    PubMed  CAS  Google Scholar 

  • Linster CL, Adler LN, Webb K, Christensen KC, Brenner C, Clarke SG (2008) A Second GDP-L-galactose Phosphorylase in Arabidopsis en Route to Vitamin C. J Biol Chem 283:18483–18492

    PubMed  CAS  Google Scholar 

  • Linster CL, Clarke SG (2008) L-ascorbate biosynthesis in higher plants: the role of VTC2. Trend Plant Sci 13:567–573

    CAS  Google Scholar 

  • Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885

    PubMed  CAS  Google Scholar 

  • Loewus FA (1963) Tracer studies of ascorbic acid formation in plants. Phytochemistry 2:109–128

    CAS  Google Scholar 

  • Loewus MW, Bedgar DL, Saito K, Loewus FA (1990) Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. Plant Physiol 94:1492–1495

    PubMed  CAS  Google Scholar 

  • Loewus FA, Jang R, Seegmiller CG (1958) The conversion of C14 -labelled sugars to L-ascorbic acid in ripening strawberries. J Biol Chem 232:533–541

    PubMed  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    PubMed  CAS  Google Scholar 

  • Major LL, Wolucka BA, Naismith JH (2005) Structure and function of GDP-mannose-3’, 5’-epimerase: an enzyme which performs three chemical reactions at the same active site. J Am Chem Soc 127:18309–18320

    PubMed  CAS  Google Scholar 

  • Mapson LW, Isherwood FA (1956) Biological synthesis of L-ascorbic acid: the conversation of derivatives of D-galacturonic acid to L-ascorbate in plant extracts. Biochem J 64:13–22

    PubMed  CAS  Google Scholar 

  • Mapson LW, Isherwood FA, Chen YT (1954) Biological synthesis of L-ascorbic acid: the conversion of L-galactono-γ-lactone into L-ascorbic acid by plant mitochondria. Biochem J 56:21–28

    PubMed  CAS  Google Scholar 

  • Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    PubMed  CAS  Google Scholar 

  • Mieda T, Yabuta Y, Rapolu M, Motoki T, Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate. Plant Cell Physiol 45:1271–1279

    PubMed  CAS  Google Scholar 

  • Moreau R, Dabrowski K (1998) Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): an agnathan fish with gulonolactone oxidase activity. Proc Natl Acad Sci USA 95:10279–10282

    PubMed  CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T, Christou P (2008) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Google Scholar 

  • Oba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of L-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    PubMed  CAS  Google Scholar 

  • Ostergaard J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for L-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. J Biol Chem 272:30009–30016

    PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotech 23:482–487

    CAS  Google Scholar 

  • Pateraki I, Sanmartin M, Kalamaki MS, Gerasopoulos D, Kenallis AK (2004) Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1, 4-lactone dehydrogenase. J Exp Bot 55:1623–1633

    PubMed  CAS  Google Scholar 

  • Patterson JH, Waller RF, Jeevarajah D, Billman-Jacobe H, McConville MJ (2003) Mannose metabolism is required for mycobacterial growth. Biochem J 372:77–86

    CAS  Google Scholar 

  • Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    PubMed  CAS  Google Scholar 

  • Qin C, Qian W, Wang W, Wu Y, Yu C, Jiang X, Wang D (2008) GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:18308–18313

    PubMed  CAS  Google Scholar 

  • Radzio JA, Lorence A, Chevone BI, Nessler CL (2003) L-Gulono-1, 4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53:837–844

    PubMed  CAS  Google Scholar 

  • Rautenkranz AAF, Li L, Machler F, Martinoia E, Oertli JJ (1994) Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol 106:187–193

    PubMed  CAS  Google Scholar 

  • Rayon C, Cabanes-Macheteau M, Loutelier-Bourhis C, Salliot-Maire I, Lemoine J, Reiter WD, Lerouge P, Faye L (1999) Characterization of N-glycans from Arabidopsis. Application to a fucose-deficient mutant. Plant Physiol 119:725–733

    PubMed  CAS  Google Scholar 

  • Roberts RM (1971) The metabolism of D-mannose-14C to polysaccharide in corn roots. Specific labelling of L-galactose, D-mannose, and L-fucose. Arch Biochem Biophys 145:685–692

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotech 24:105–109

    Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  • Siendone E, Gonzalez-Reyes JA, Santos-Ocana C, Navas P, Cordoba F (1999) Biosynthesis of ascorbic acid in kidney bean. L-galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol 120:907–912

    Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2003) Vitamin C booster. Nat Biotech 21:134–6

    CAS  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    PubMed  CAS  Google Scholar 

  • Tabata K, Oba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1, 4-lactone dehydrogenase. Plant J 27:139–148

    PubMed  CAS  Google Scholar 

  • Tabata K, Takaoka T, Esaka M (2002) Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631–635

    PubMed  CAS  Google Scholar 

  • Tamaoki M, Mukai F, Asai N, Nakajima N, Kubo A, Aono M, Saji H (2003) Light-controlled expression of a gene encoding L-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci 164:1111–1117

    CAS  Google Scholar 

  • Thomas CE, McLean LR, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    PubMed  CAS  Google Scholar 

  • Timmer CP (2003) Biotechnology and food systems in developing countries. J Nutr 133:3319–3322

    PubMed  CAS  Google Scholar 

  • Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1, 4-lactone dehydrogenase. Planta 220:854–863

    PubMed  CAS  Google Scholar 

  • Vain P (2006) Global trends in plant transgenic science and technology (1973–2003). Trend Biotech 24:206–211

    CAS  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trend Plant Sci 9:573–577

    CAS  Google Scholar 

  • Van Ommen B (2004) Nutrigenomics: exploiting systems biology in the nutrition and health arenas. Nutrition 20:4–8

    PubMed  Google Scholar 

  • Van Schaftingen E, Jaeken J (1995) Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 377:318–320

    PubMed  Google Scholar 

  • Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-D-mannose 3”, 5”-epimerase from rice. Phytochemistry 67:338–346

    PubMed  CAS  Google Scholar 

  • Wenck A, Hansen G (2005) Positive selection. Meth Mol Biol 286:227–236

    CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    PubMed  CAS  Google Scholar 

  • Wilkinson SR, Prathalingam SR, Taylor MC, Horn D, Kelly JM (2005) Vitamin C biosynthesis in trypanosomes: a role for the glycosome. Proc Natl Acad Sci USA 102:11645–11650

    PubMed  CAS  Google Scholar 

  • Wolucka BA, Persiau G, van Doorsselaere J, Davey MW, Demol H, Vandekerckhove J, van Montagu M, Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose 3”, 5”-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Natl Acad Sci USA 98:14843–14848

    PubMed  CAS  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3’, 5’-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    PubMed  CAS  Google Scholar 

  • Wolucka BA, Van Montagu M (2007) The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68:2602–2613

    PubMed  CAS  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/man selection system. Plant Cell Rep 24:426–432

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneharu Esaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Badejo, A.A., Esaka, M. (2010). Identification of Potential Gene Targets for the Improvement of Ascorbate Contents of Genetically Modified Plants. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_15

Download citation

Publish with us

Policies and ethics