Skip to main content

The East Antarctic Ice Sheet

  • Chapter
  • First Online:

Abstract

Antarctica is the fifth largest continent on the Earth with an area of 14,200,000 km2. About 98% of the surface of Antarctica is covered by an ice sheet that is 2,000 m thick on average. The volume of the ice sheet has changed in the course of time and reached a maximum during the late Wisconsin (Weichselian) ice age about 20,000 years ago. At that time, the volume of the Antarctic ice sheet was 37.7 × 106 km3, of which 24.2 × 106 km3 covered the East Antarctic craton and 13.5 × 106 km3 overlay the bedrock of West Antarctica and the associated islands (Hughes et al. 1981). Taken together, the ice sheets of Antarctica constitute about 90% of the ice that exists on the Earth. The ice cap that covers Greenland makes up about 9% of the total and all other ice caps and glaciers on the Earth contribute only 1% of the ice on the Earth (Hughes et al. 1981; Bindschadler 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aharon P (1988) Oxygen, carbon, and U-series isotopes of aragonite from Vestfold Hills, Antarctica: Clues to geochemical processes in subglacial environments. Geochim Cosmochim Acta 52:2321–2331

    Google Scholar 

  • Aldaz L, Deutsch S (1967) On a relationship between air temperature and oxygen isotope ratio of snow and firn in the South Pole region. Earth Planet Lett 3:267–274

    Google Scholar 

  • Alley RB (2000) The two-mile time machine: ice cores, abrupt climate change, and our future. Amazon.com

    Google Scholar 

  • Alley RB (ed) (2002) Abrupt climate change: inevitable surprises. Committee on Abrupt Climate Change, National Research Council, National Academy Press, Washington, D.C.

    Google Scholar 

  • Alley RB (2004) Abrupt climate change. Scient Amer 291(5):62–69

    Google Scholar 

  • Alley RB, Bender ML (1998) Greenland ice cores: frozen in time. Scient Amer 285(2):4–9

    Google Scholar 

  • Alley RB, Bindschadler RA (eds) (2001) The West Antarctic ice sheet: behavior and environment. Antarctic Research Series, vol. 77. American Geophysical Union, Washington, DC

    Google Scholar 

  • Annexstad JO, Nishio F (1979). Glaciological studies in Allan Hills, 1978–79. Antarctic J US 14(5):87–88

    Google Scholar 

  • Annexstad JO, Schultz L (1982) Triangulation survey of the Allan Hills icefield, 1981–1982. Antarctic J US 17(5):57–58

    Google Scholar 

  • Baker PE (1978) The South Sandwich Islands: III. Petrology of the volcanic rocks. British Antarctic Survey, Scient Rept 93:1–34

    Google Scholar 

  • Barrett PJ, Elston DP, Harwood DM, McKelvey BC, Webb P-N (1987) Mid-Cenozoic record of glaciation and sea-level change on the margin of the Victoria Land Basin, Antarctica. Geology 15:634–637

    Google Scholar 

  • Bauer VF (1961) Kalkabsätze unter Kalkalpengletschern und ihre Bedeutung fūr die Altersbestimmung heute gletscherfrei werdender Karrenformen. Zeitschrift fūr Gletscherkunde und Glazialgeologie 4:215–225

    Google Scholar 

  • Bell RE (2008) The unquiet ice. Scient Amer 293 (February):60–67

    Google Scholar 

  • Bell RE, Studinger M, Fahnestock MA, Shuman CA (2006) Tectonically controlled subglacial lakes on the flanks of the Gamburtsev subglacial mountains, East Antarctica. Geophys Res Lett 33:LO2504, 4p

    Google Scholar 

  • Bell RE, Studinger M, Shuman CA, Fahnestock MA, Joughin I (2007) Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445:904–907

    Google Scholar 

  • Bentley CR (1972) Subglacial topography. In: Heezen BC, Tharp M, Bentley CR (eds) Morphology of the Earth in the Antarctic and Subantarctic. Antarctic Map, Folio Series 16, Plate 7. American Geographysical Society, New York

    Google Scholar 

  • Bentley CR (1997) Rapid sea-level rise soon from West Antarctic ice-sheet collapse? Science 275:1077–1078

    Google Scholar 

  • Bentley CR, Thomas RH, Velicogna I (2007) Ice sheets. In: Global outlook for ice and snow. Section 6A:99–114. United Nations Environmental Programme, United Nations, New York

    Google Scholar 

  • Bindschadler R (2004) The history and significance of ice Earth. In: Dasch P (ed) Ice worlds of the solar system. Cambridge University Press, Cambridge, pp 6–32

    Google Scholar 

  • Bindschadler RA (ed) (1990) Sea rise: a multidisciplinary research initiative to predict rapid changes in global sea level caused by collapse of marine ice sheets. NASA Conference Pub 3075:1–47

    Google Scholar 

  • Bindschadler, RA (1998) Future of the West Antarctic ice sheet. Science 282:428–429

    Google Scholar 

  • Bindschadler RA, Bentley CR (2002) On thin ice. Scient Amer 287(6):98–105

    Google Scholar 

  • Bjaerke T, Dypvik H (1977) Quaternary “stromatolitic” limestone of subglacial origin from Scandinavia. J Sed Petrol 47:1321–1327

    Google Scholar 

  • Boger PD, Faure G (1988) The possible occurrence of volcanic ash in till from Victoria Land, Antarctica. Antarctic J US 23(5):29–30

    Google Scholar 

  • Bolshov MA, Boutron CF, Zybin ZV (1989) Determination of lead in Antarctic ice at picogram-per-gram level by laser atomic fluorescence spectrometry. Anal Chem 61:1758–1762

    Google Scholar 

  • Boutron CF (1990) A clean laboratory for ultralow concentration heavy metal analyses. Fresenius J Anal Chem 337:482–491

    Google Scholar 

  • Boutron C, Patterson C (1983) The occurrence of lead in Antarctic recent snow, firn deposited over the last two centuries and prehistoric ice. Geochim Cosmcohim Acta 47(8):1355–1368

    Google Scholar 

  • Boutron CF, Patterson CC (1986) Lead concentration changes in Antarctic ice during the Wisconsin Holocene transition. Nature 323:222–225

    Google Scholar 

  • Boutron CF, Patterson CC (1987) Relative levels of natural and anthropogenic lead in recent Antarctic snow. J Geophys Res 92:8454–8464

    Google Scholar 

  • Boutron CF, Patterson CC, Petrov VN, Barkov NI (1987) Preliminary data on changes of lead concentrations in Antarctic ice from 155,000 to 26,000 years BP. Atmos Environ 21:1197–1202

    Google Scholar 

  • Boutron CF, Bolshov MA, Koloshnikov VG, Patterson CC, Barkov NI (1990) Direct determination of lead in Vostok Antarctic ancient ice by laser excited atomic fluorescence spectrometry. Atmos Environ 24A:1797–1800

    Google Scholar 

  • Boutron CF, Candelone J-P., Hong SM (1994) Past and recent changes in the large scale tropospheric cycles of lead and other heavy metals as documented in Antarctic and Greenland snow and ice: a review. Geochim Cosmochim Acta 58(15):3217–3225

    Google Scholar 

  • Bowser CJ, Rafter TA, Black RF (1970) Geochemical evidence for the origin of mirabilite deposits near Hobbs Glacier, Victoria Land, Antarctica Mineral. Soc Amer Spec Paper 3:261–272

    Google Scholar 

  • Brandriss ME, O’Neil JR, Edlund MB, Stoermer EF (1998) Oxygen isotope fractionation between diatomaceous silica and water. Geochim Cosmochim Acta 62:1119–1125

    Google Scholar 

  • Budd WF, Jenssen MJD, Radok U (1971) Derived physical characteristics of the Antarctic ice sheet. A.N.A.R.E. Interim Reports, Series A (N), Glaciology, 1–178 Antarctic Division, Melbourne, Australia

    Google Scholar 

  • Bull C, McKelvey BC, Webb PN (1962) Quaternary glaciations in southern Victoria Land Antarctica. J Glaciol 4:63–78

    Google Scholar 

  • Calkin PE, Nichols RL (1971) Quaternary studies in Antarctica. In: Adie RJ (ed) Antarctic geology and geophysics. Universitetsforlaget, Oslo, Norway, pp 625–644

    Google Scholar 

  • Calvin M (1968) Chemical evolution. Oxford University Press, Oxford

    Google Scholar 

  • Cannon HL, Hopps HC (eds) (1971) Environmental geochemistry in health and disease. Geol Soc Amer Mem 123:1–230

    Google Scholar 

  • Cassidy WA, Meunier T, Buchwald V, Thompson C (1983) Search for meteorites in the Allan Hills/Elephant Moraine area, 1982–83. Ant J US 18:81–82

    Google Scholar 

  • Cazenave A, Lombard A, Llovel W (2008) Present-day sea-level rise: a synthesis. Comptes Rendus Geosci 340:761–770

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen, and carbon isotope fractionation factors applicable to geological systems. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Reviews in mineralogy and geochemistry, vol. 43. Mineralogical Society of America, Blacksburg, Virginia, pp 1–81

    Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33. doi:10.1029/2006 GL026510

    Google Scholar 

  • Claridge GGC, Campbell IB (1977) The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci 123:377–384

    Google Scholar 

  • Compston W (1999) Geological age determination by instrumental analysis. The 29th Halmond Lecture. Mineral Mag 63:297–311

    Google Scholar 

  • Cook-Anderson G (2007) NASA satellites unearth clues to leaks in Antarctic “plumbing system”. Earth Obser 19(2):32

    Google Scholar 

  • Coren F, Delisle G, Sterzai P (2003) Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry. Meteorit Planet. Sci 38(9):1319–1330

    Google Scholar 

  • Crowell JC, Frakes LA (1970) Phanerozoic glaciation and the causes of ice ages. Amer J Sci 268:193–224

    Google Scholar 

  • Crozaz G., Picciotto E, De Breuck W (1964) Antarctic snow chronology with Pb210. J Geophys Res 69(12):2597–2604

    Google Scholar 

  • Damm V (1996) Subice morphology deduced by radio echo sounding (RES) in the area between David and Mawson glaciers, Victoria Land. Geol Jahrbuch B89:321–331

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Moller J, Langway CC (1969) One thousand centuries of climate record from Camp Century on the Greenland ice sheet. Science 166:377–381

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HP, Langway CC Jr (1971) Climatic record revealed by the Camp Century ice core. In: Turekin KK (ed) Late Cenozoic Glacial Ages. Yale University Press, New Haven, CT, pp 37–56

    Google Scholar 

  • de Angelis M, Legrand M, Petit JR, Barkov NI, Korotkevitch YS, Kotlyakov VM (1984) Soluble and insoluble impurities along the 950-m deep Vostok core (Antarctica): climate implications. J Atmos Chem 1:215–239

    Google Scholar 

  • Delisle G, Sievers J (1991) Sub-ice topography and meteorite finds near the Allan Hills and the Near Western ice field, Victoria Land, Antarctica. J Geophys Res 96(E1):15577–15587

    Google Scholar 

  • Delmas R (1982) Antarctic sulphate budget. Nature 299:667–678

    Google Scholar 

  • Delmas R, Barnola M, Legrand M (1982a) Gas derived aerosol in central Antarctic snow and ice: the case of sulfuric and nitric acids. Ann Glaciol 3:71–76

    Google Scholar 

  • Delmas R, Briat M, Legrand M (1982b) Chemistry of South Polar snow. J Geophys Res 87(C13):4314–4318

    Google Scholar 

  • Delmas R, Legrand M, Aristarain A, Zanolini F (1985) Volcanic deposits in Antarctic snow and ice. J Geophys Res 90:12,901–12,920

    Google Scholar 

  • Denton GH, Hughes TJ (eds) (1981) The last great ice sheets. Wiley-Interscience, New York

    Google Scholar 

  • Denton GF, Armstrong RF, Stuiver M (1971) The late Cenozoic glacial history of Antarctica. In: Turekian K (ed) Late Cenozoic Ice Ages. Yale University Press, New Haven, CT

    Google Scholar 

  • Denton GH, Bockheim JG, Wilson SC, Stuiver M (1989) Late Wisconsin and Early Holocene glacial history, inner Ross Embayment, Antarctica. Quat Res 31(2):151–182

    Google Scholar 

  • Denton GH, Sugden DE, Marchant DR, Hall BL, Wilch TI (1993) East Antarctic ice sheet sensitivity to Pliocene climatic change from a Dry Valleys, perspective. Geografiska Annaler 75A(4):155–204

    Google Scholar 

  • Dreschhoff GAM, Zeller EJ (1994) 415-year Greenland ice-core record of solar proton events dated by volcanic eruptive episodes. Institute for Tertiary-Quaternary Studies-TER-QUA Symposium Series, 2:1–24

    Google Scholar 

  • Drewry DJ (1971) Subglaical morphology between the Transantarctic Mountains and the South Pole. In: Adie RJ (ed) Antarctic geology and geophysics. Universitetsforlaget, Oslo, Norway, 693–704

    Google Scholar 

  • Drewry DJ (1972) The contribution of radio-echo sounding to the investigation of Cenozoic tectonics and glaciation in Antarctica. In: Price RJ, Sugden DE (eds) Polar geomorphology. Inst Brit Geol Spec Publ 4:43–58

    Google Scholar 

  • Drewry DJ (1973) Sub-ice relief and geology of East Antarctica. Ph.D. Dissertation University of Cambridge

    Google Scholar 

  • Drewry DJ (1975) Initiation and growth of the East Antarctic ice sheet. J Geol Soc, Lond 131:255–273

    Google Scholar 

  • Dunbar NW, Cashman KV, Dupre R (1994) Crystallization processes of anorthoclase phenocrysts in the Mount Erebus magmatic system. In: Kyle PR (ed) Volcanological Studies of Mount Erebus. Antarctic Research Series, vol. 60. American Geophysical Union, Washington, DC

    Google Scholar 

  • Dunbar NW, Kyle PR, McIntosh WC, Esser RP (1995a). Tephra layers in blue ice, Allan Hills, Antarctica: a new source of glacial tephrochronlogical data. Antarctic J US 30(5):76–77

    Google Scholar 

  • Dunbar NW, Kyle PR, McIntosh WC, Esser RP (1995b) Geochemical composition and stratigraphy of tephra layers in Antarctic blue ice: insights into glacial tephrochronology. 7th SCAR Symposium on Antarctic Sciences, Abstracts, p 115. Siena, Italy

    Google Scholar 

  • Emiliani C (1978) The cause of ice ages. Earth Planet Sci Lett 37:349–352

    Google Scholar 

  • Emiliani C (1992) Planet Earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press, New York

    Google Scholar 

  • EPICA (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628 (56 authors from 11 countries)

    Google Scholar 

  • Epstein S, Sharp RP, Gow AJ (1965) Six-year record of oxygen and hydrogen isotope variations in South Pole firn. J Geophys Res 70(8):1809–1814

    Google Scholar 

  • Epstein S, Sharp RP, Gow AJ (1970) Antarctic ice sheet; stable isotope analysis of Byrd Station cores and interhemispheric climatic implications. Science 168:1570–1572

    Google Scholar 

  • Eugster HP (1966) Sodium carbonate-bicarbonate minerals as indicators of Pco2. J Geophys Res 71:3369–3377

    Google Scholar 

  • Faure G (1990a) Origin of stranding surfaces. Lunar Planet. Inst. Tech. Rep., 90–03:11–15. Houston, TX

    Google Scholar 

  • Faure G (1990b) Physical description of the Elephant and Reckling moraines. Lunar Planet. Inst. Tech. Rep., 90–03:24–25. Houston, TXs

    Google Scholar 

  • Faure G (1990c) Subice topography and the formation of supraglacial moraines. Lunar Planet. Inst. Tech. Rep., 90–03:32–33. Houston, TX

    Google Scholar 

  • Faure, G. (1990d) Supraglacial moraines, meteorites, and climate change. Lunar Planet. Inst. Tech. Rep., 90–03:33–35. Houston, TX

    Google Scholar 

  • Faure G (1998a) Principles and applications of geochemistry, 2nd edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Faure G (1998b) Effect of environmental lead on human health. In: Faure G (ed) Principles and applications of geochemistry, 2nd edn. Prentice-Hall, Upper Saddle River, NJ, pp 485–505

    Google Scholar 

  • Faure G, Botoman G (1984) Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon, and strontium. Isotope Geosci (Chem Geol) 2:313–324

    Google Scholar 

  • Faure G, Buchanan D (1987) Glaciology of the East Antarctic ice sheet in the Allan Hills: a preliminary interpretation. Antarctic J US 22(5):74–75

    Google Scholar 

  • Faure G, Buchanan D (1991) Ablation rates of the ice fields in the vicinity of the Allan Hills, Victoria Land, Antarctica. In: Elliot DH (ed) Contributions to Antarctic Research II. Antarctic Research Series vol. 53. American Geophysical Research, Washington, DC, pp 19–31

    Google Scholar 

  • Faure G, Harwood DM (1990) Marine microfossils in till clasts of the Elephant Moraine on the East Antarctic ice sheet. Antarctic J US 25(5):23–25

    Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes: principles and applications, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Faure G, Mensing TM (2007) Introduction to planetary science; the geological perspective. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Faure G, Sutton S (1985) Thermoluminescence of sandstone clasts of the Elephant Moraine. Antarctic J US 19(5):12–14

    Google Scholar 

  • Faure G, Taylor KS (1985) The geology and origin of the Elephant Moraine on the East Antarctic ice sheet. Antarctic J US 19(5):11–12

    Google Scholar 

  • Faure G, Kallstrom ML, Mensing TM (1984) Classification and age of terrestrial boulders in the Elephant and Reckling moraines. Antarctic J US 19(5):28–29

    Google Scholar 

  • Faure G, Taylor KS, Jones LM (1986) Hydrothermal calcite in the Elephant Moraine. Antarctic J US 21(5):21

    Google Scholar 

  • Faure G, Strobel ML, Hagen EH, Buchanan D (1987) Glacial geology of the Reckling Moraine on the East Antarctic ice sheet. Antarctic J US 22(5):61–63

    Google Scholar 

  • Faure G, Hoefs J, Jones LM, Curtis JB, Pride DE (1988) Extreme 18O depletion in calcite and chert clasts from the Elephant Moraine on the East Antarctic ice sheet. Nature 332:352–354

    Google Scholar 

  • Faure G, Grootes P, Buchanan D, Hagen EH (1992) Oxygen isotope study of the ice fields surrounding the Reckling Moraine on the East Antarctic ice sheet. In: Elliot DH (ed) Contributions to Antarctic Research. Antarctic Research Series, III, vol. 57. American Geophysical Research, Washington, DC, pp 15–26

    Google Scholar 

  • Faure G, Wehn KS (Taylor), Montello JM, Hagen EH, Strobel ML, Johnson KS (1993) Isotopic composition of the ice and sub-glacial geology near the Allan Hills, Victoria Land, Antarctica. In: Findlay RH et al (eds) Gondwana eight: assembly, evolution, and dispersal. A.A. Balkema, Rotterdam, The Netherlands, pp 485–495

    Google Scholar 

  • Faure G, Mensing TM, Manson VL, Place MC (1994) Geochemistry of a layer of volcanic ash in the ice near Brimstone Peak, southern Victoria Land. Antarctic J US 29(5):22–23

    Google Scholar 

  • Fitzpatrick JJ, Muhs DR (1989) Borax in the supraglacial moraine of the Lewis Cliff, Buckley Island quadrangle - First Antarctic occurrence. Antarctic J US 24(5):63–65

    Google Scholar 

  • Fitzpatrick JJ, Muhs DR, Jull AJT (1990) Saline minerals in the Lewis Cliff ice tongue, Buckley Island quadrangle, Antarctica. In: Elliot DH (ed) Contributions to Antarctic Research I. Antarctic Research Series, vol. 50. American Geophysical Union, Washington, DC, pp 57–69

    Google Scholar 

  • Ford DC, Fuller PG, Drake JJ (1970) Calcite precipitates at the soles of temperate glaciers. Nature 226:441–442

    Google Scholar 

  • Fricker HA, Scambos T, Bindschadler RA, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548

    Google Scholar 

  • Friedman I, O’Neil (1977) Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geol. Surv. Prof. Paper 440-KK, Washington, DC

    Google Scholar 

  • Fuge R, Billet M, Selinus O (1996) Environmental geochemistry. Appl Geochem 11(1/2):1–385

    Google Scholar 

  • Garrels RM, McKenzie FT (1967) Origin of the chemical composition of some springs and lakes. In: Equilibrium concepts in natural water systems. American Chemical Society, Advances in Chemistry Series, vol. 67. Washington, DC, pp 222–242

    Google Scholar 

  • Ghazi AM (1994) Lead in archaeological samples: an isotopic study by ICP-MS. Appl Geochim 9:627–636

    Google Scholar 

  • Gibson GW (1962) Geological investigations in southern Victoria Land, Antarctica. Part 8: evaporite salts in the Victoria Valley region. New Zealand J Geol Geophys 5(3):361–374

    Google Scholar 

  • Gillet F, Rado C (1979) A 180-meter core drilling at Dome C and measurements in the 905-meter drill hole. Antarctic J US 14(5):101

    Google Scholar 

  • Giovinetto MB, Bull C (1987) Summary and analyses of surface mass balance compilations for Antarctica, 1960–1985. Report No. 1, Byrd Polar Research Center, Ohio State University, Columbus, OH (ISSN: 0896–2472):1–90

    Google Scholar 

  • Goldich SS, Treves SB, Suhr NH, Stuckless JS (1975) Geochemistry of the Cenozoic volcanic rocks of Ross Island and vicinity, Antarctica J Geol 83(4):415–434

    Google Scholar 

  • Gonfiantini R, Togliatti V, Tongiorgi E, DeBreuck W, Picciotto E (1963) Snow stratigraphy and oxygen isotopic variations in the glaciological pit of King Baudouin Station, Queen Maud Land, Antarctica. J Geophys Res 68(13):3791–3798

    Google Scholar 

  • Gow AJ (1965) On the accumulation and seasonal stratification of snow at the South Pole. J Glaciol 5(40):467–477

    Google Scholar 

  • Gow AJ (1971) Analysis of Antarctic ice cores. Antarctic J US 6(5):205–206

    Google Scholar 

  • Gow AJ, Williamson T (1971) Volcanic ash in the Antarctic ice sheet and its possible climate implications. Earth Planet Sci Lett 13:210–213

    Google Scholar 

  • Gow AJ, Ueda HT, Garfield DE (1968) Antarctic ice sheet: preliminary results of the first core hole to bedrock. Science 161:1011

    Google Scholar 

  • Gow AJ, Epstein S, Sheehy W (1979) On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J Glaciol 23:185–192

    Google Scholar 

  • Hallet B (1976) Deposits formed by subglacial precipitation of CaCO3. Geol Soc Amer Bull 87:1003–1015

    Google Scholar 

  • Hammer CU (1984) Traces of Icelandic eruptions in the Greenland ice sheet. Jokull 34:51–65

    Google Scholar 

  • Hammer CU, Clausen HP, Dansgaard W (1981a) Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288:230–235

    Google Scholar 

  • Hammer CU, Clausen HB, Dansgaard W (1981b) Past volcanism and climate revealed by Greenland ice cores. J Volcanol Geotherm Res 11:3–10

    Google Scholar 

  • Hanappe F, Vosters M, Picciotto E, Deutsch S (1968) Chimie des neiges Antarctique et taux de deposition de matiere extraterrestre-deuxieme article. Earth Planet Sci 4:487–496

    Google Scholar 

  • Hanshaw BB, Hallet B (1978) Oxygen isotope composition of subglacially precipitated calcite: possible paleoclimatic implications. Science 200:1267–1270

    Google Scholar 

  • Hardie LA (1984) Evaporites: marine or nonmarine? Science 284:193–240

    Google Scholar 

  • Hardie LA, Eugster HP (1970) The evolution of closed-system brines. Mineral Soc Amer Spec Paper 3:273–290

    Google Scholar 

  • Hartmann WK (2005) Moons and planets. 5th edn., Brooks/Cole, Belmont California

    Google Scholar 

  • Harvey RP, Dunbar NW, McIntosh WC, Esser RP, Nishiizumi K, Taylor S, Caffee MW (1998) Meteoritic event recorded in Antarctic ice. Geology 26(7):607–610

    Google Scholar 

  • Harvie CE, Weare JH (1980) The prediction of mineral solubilities in natural water: The Na-K-Mg-Cl-SO4-H2O system from zero to high concentrations at 25°C. Geochim Cosmochim Acta 44:981–997

    Google Scholar 

  • Harwood DM (1983) Diatoms from the Sirius Formation, Transantarctic J US 18(5):98–100

    Google Scholar 

  • Harwood DM (1985) Late Neogene climatic fluctuation in the southern high latitudes: Implication of a warm Pliocene and deglaciated Antarctic continent. South African J Sci 81:239–241

    Google Scholar 

  • Harwood DM (1986) Recycled siliceous microfossils from the Sirius Formation. Antarctic J US 21(5):101–103

    Google Scholar 

  • Herron MM (1982) Impurity sources of F, Cl, and in Greenland and Antarctic precipitation. J Geophys Res 87(C4):3052–3060

    Google Scholar 

  • Hillaire-Marcel C, Soucy JM, Cailleux A (1979). Analyse isotopique de concretions sous-glaciaires de l’ inlandsis laurentidien et teneus en oxygen-18 de la glace. Canadian J Earth Sci 16:1494–1498

    Google Scholar 

  • Hitchcock DR, Spiller LL, Wilson WE (1980) Sulfuric acid aerosols and HCl release in coastal atmospheres: evidence of rapid formation of sulfuric acid particulates. Atmos Environ 14:165–182

    Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry, 4th edn. Springer, Heidelberg, Germany

    Google Scholar 

  • Holdgate MW (1980) Some environmental questions: an after-dinner address. Annal Glaciol 1:135–136

    Google Scholar 

  • Hollin JT (1962) On the glacial history of Antarctica. J Glaciol 32:173–195

    Google Scholar 

  • Huebert BJ, Lazrus AL (1980a) Tropospheric gas-phase and particulate nitrate measurements. J Geophys Res 85(C12):7322–7328

    Google Scholar 

  • Huebert BJ, Lazrus AL (1980b) Bulk composition of aerosols in the remote troposphere. J Geophys Res 85(C12):7337–7344

    Google Scholar 

  • Hughes TJ (1981) Numerical reconstruction of paleo-ice sheets. In: Denton GH, Hughes TJ (eds) The last great ice sheets. Wiley-Interscience, New York, pp 222–274

    Google Scholar 

  • Hughes TJ (1987) Deluge II and the continent of doom; rising sea level and collapsing Antarctic ice. Boreas 16:89–100

    Google Scholar 

  • Hughes TJ, Denton GH, Andersen BG, Schilling DH, Fastook JL, Lingle CS (1981) The last great ice sheets; a global view. In: Denton GH, Hughes TJ (eds) The last great ice sheets. Wiley-Interscience, New York, pp 275–317

    Google Scholar 

  • Hult JL, Ostrander NC (1973) Antarctic icebergs as a global fresh water resource. The Rand Corp., R-1255-NFS

    Google Scholar 

  • Huppert HE, Turner JS (1978) On melting icebergs. Nature 271:46–48

    Google Scholar 

  • Husseiny AA (ed) (1978) Iceberg utilization: proceedings of the first international conference, Ames, Iowa, 2–6 October, 1977. Pergamon Press, Oxford

    Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multi-year cycles in sea-level records. J Geophys Res. doi:10.1029/2005JC003229

    Google Scholar 

  • Job JG (1975) Simulation of iceberg towing. Report to the Committee on Iceberg Utilization of the Australian Academy of Science, Canberra, A.C.T.

    Google Scholar 

  • Job JG (1978a) Yields and energetics in moving unprotected icebergs to southern continents. In: Husseiny AA (ed) Iceberg utilization. Pergamon Press, Oxford, pp 339–349

    Google Scholar 

  • Job (1978b) High efficiency iceberg propulsion systems. In: Husseiny AA (ed) Iceberg utilization. Pergamon Press, Oxford, pp 503–527

    Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway CC (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235:429–434

    Google Scholar 

  • Jones LM, Walker RL, Hall BA, Borns HW Jr(1973a) Origin of the Jurassic dolerites and basalts of southern Victoria Land. Antarctic J US 12(5):268–270

    Google Scholar 

  • Jones LM, Whitney JA, Stromer JC (1973b) A volcanic ash deposit, Wright Valley. Antarctic J US 8(5):270–272

    Google Scholar 

  • Jouzel J, Merlivat I, Lorius C (1982) Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature 299:688–691

    Google Scholar 

  • Kapitsa AR (1968) Podlednyy rel’yef Antarktidy. Moscow, USSR, pp 1–98

    Google Scholar 

  • Katsushima T, Nishio F, Omae H, Ishikawa M, Takahashi S (1984) Composition of dirt layers in the bare ice areas near the Yamato Mountains in Queen Maud Land and the Allan Hills in Victoria Land, Antarctica. Mem. Nat. Inst. Pol Res Special Issue 34:174–187

    Google Scholar 

  • Katz A, Starinsky A (2009) Geochemical history of the Dead Sea. Aquat Geochim 15:159–194

    Google Scholar 

  • Keys JR, Williams K (1981) Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochim Cosmochim Acta 45:2299–2309

    Google Scholar 

  • Keys JR, Anderton PS, Kyle PR (1977) Tephra and debris layers in the Skelton Névé and Kempe Glacier, South Victoria Land, Antarctica. New Zealand J Geol Geophys 20(5):971–1002

    Google Scholar 

  • Kiryukhin VA, Tolstikhin NI (1988) The hydrology of Antarctica. Int Geol Rev 30(1):36–45

    Google Scholar 

  • Kita I, Taguchi S, Matsubaya O (1985) Oxygen isotope fractionation between amorphous silica and water at 34–93°C. Nature 314:83–84

    Google Scholar 

  • Klein-BenDavid O, Sass E, Katz A (2004) The evolution of marine evaporitic brines in inland basins: The Jordan-Dead Sea Rift valley. Geochim Cosmochim Acta 68(8):1763–1775

    Google Scholar 

  • Koeberl C (1990) Dust bands in blue ice fields in Antarctica and their relationship to meteorites and ice. In: Cassidy WA, Whillans I (eds) Workshop of Antarctic meteorite stranding surfaces. Lunar Planet. Inst., Tech. Report. 90–03:70–74. Houston, TX

    Google Scholar 

  • Koeberl C, Yanai K, Cassidy WA, Schutt JW (1987). Investigation of dust components from dust bands from blue ice fields in the Lewis Cliff (Beardmore) area, Antarctica. In: Nagata T (ed) 12th Symposium of Antarctic Meteorites. Nat. Inst. Polar Res., Tokyo, Japan

    Google Scholar 

  • Kohler J (2007) Glaciology: lubricating lakes. Nature 445:830–831

    Google Scholar 

  • Kumai M (1976) Identification of nuclei and concentrations of chemical species in snow crystal samples at South Pole. J Atmos. Sci 33:833–844

    Google Scholar 

  • Kumai M (1977) Electron microscope analysis of aerosols in snow and deep cores from Greenland. In, Isotopes and Impurities in Snow and Ice. Proceedings of Grenoble Symposium, 1975. IAHS-AISH Pub. No 118:341–350

    Google Scholar 

  • Kvasov DD, Verbitsky MYa (1981) Causes of Antarctic glaciation in the Cenozoic. Quatern Res 15:1–17

    Google Scholar 

  • Kyle PR (1990) The Pleiades. In: LeMasurier WE, Thomson JW (eds) Volcanoes of the Antarctic plate and southern oceans. Antarctic Research Series, vol. 48. American Geophysical Union, Washington, DC, pp 60–64

    Google Scholar 

  • Kyle PR, Jezek PA (1978) Compositions of three tephra layers from the Byrd-Station ice core, Antarctica. J Volcanol Geotherm Res 4:225–232

    Google Scholar 

  • Kyle PR, Jezek PA, Mosley-Thompson E, Thompson LG (1981) Tephra layers in the Byrd Station ice core and the Dome C ice core, Antarctica, and their climatic importance. J Volcanol Geotherm Res 11:29–39

    Google Scholar 

  • Kyle PR, Palais JM, Delmas R (1982) The volcanic record of Antarctic ice cores: Preliminary results and potential for future investigations. Annal Glaciol 3:172–177

    Google Scholar 

  • Kyle PR, Palais JM, Thomas E (1984) The Vostok tephra: an important englacial stratigraphic marker? Antarctic J US 19:64–65

    Google Scholar 

  • Kyle PR, Moore JA, Thirlwall MF (1992) Petrological evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. J Petrol 33(4):849–875

    Google Scholar 

  • Labeyrie L (1974) New approach to surface seawater paleotemperatures using 18O/16O ratios in silica of diatom frustules. Nature 248:40–41

    Google Scholar 

  • Labeyrie LD, Pichon JJ, Labracherie M, Ippolito P, Duprat J, Duplessy JC (1986) Melting history of Antarctica during the past 60,000 years. Nature 322:701–705

    Google Scholar 

  • Langway CC, JR, Oeschger H, Dansgaard W (eds) (1985) Greenland ice core: geophyics, geochemistry, and the environment. Geophysics Monograph, vol. 33. American Geophysical Union, Washington, DC

    Google Scholar 

  • Legrand MR, Delmas RJ (1984) The ionic balance of Antarctic snow: a 10-year detailed record. Atmos Environ 18:1867–1874

    Google Scholar 

  • Legrand MR, Delmas RJ (1987) A 220-years continuous record of volcanic H2SO4 in the Antarctic ice sheet. Nature 327:671–676

    Google Scholar 

  • Legrand MR, Delmas RJ (1988) Formation of HCl in the Antarctic atmosphere. J Geophys Res 93(D6):7153–7168

    Google Scholar 

  • Legrand MR, Aristarian AJ, Delmas RJ (1982) Acid titration of polar snow. Anal Chem 65:2446–2449

    Google Scholar 

  • Legrand MR, deAngelis M, Delmas RJ (1984) Ion chromographic determination of common ions at ultratrace levels in Antarctic snow and ice. Anal Chem Acta 54:1336–1339

    Google Scholar 

  • LeMasurier WE, Rex DC (1990) Mount Takahe. In: LeMasurier WE, Thomson JW (eds) Volcanoes of the Antarctic plate and southern oceans. Antarctic Research Series, vol. 48. American Geophysical Union, Washington, DC, pp 169–174

    Google Scholar 

  • Lemmens M, Lorrain R, Haren J (1982) Isotopic composition of ice and subglacially precipitated calcite in an alpine area. Zeitschrift für Gletscherkunde und Glazialgeologie 18:151–159

    Google Scholar 

  • Long AJ (2009) Back to the future: Greenland’s contribution to sea-level change. GSA Today 19(6):4–10

    Google Scholar 

  • Lorius C, Merlivat L (1997) Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in the coastal area. In: Rodda JC (ed) International symposium on isotopes and impurities in snow and ice. Internat. Assoc. Hydrol. Sci., Pub., vol. 118. Bartholomew Press, Surrey, pp 127–137

    Google Scholar 

  • Lorius C, Donnou D (1978) A 905-meter deep core drilling at Dome C (East Antarctica) and related surface programs. Antarctic J US 13(4):50–51

    Google Scholar 

  • Lorius C, Merlivat L, Jouzel J, Pourchet M (1979) A 30,000-yr isotope climatic record from Antarctic ice. Nature 280:644–648

    Google Scholar 

  • Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevich YS, Kotlyakov VM (1985) A 150,000 climate record from Antarctic ice. Nature 316:591–596

    Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    Google Scholar 

  • Lüthi D, LeLoch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before the present. Nature 453:379–382

    Google Scholar 

  • Magaritz M (1973) Precipitation of secondary calcite in glacier areas: carbon and oxygen isotopic compositions of calcites from Mt. Hermon, Israel, and the European Alps. Earth Planet. Sci Lett 17:385–390

    Google Scholar 

  • Marvin UB (1990) Diverse components of dust bands in Allan Hills ice samples. In: Cassidy WA, Whillans IM (eds) Workshop on Antarctic meteorite stranding Surfaces. LPI Tech. Rept., vol. 90–03. Lunar and Planetary Institute, Houston, TX, pp 75–79

    Google Scholar 

  • Mayewski PA, Lyons WB, Zielinski G, Twickler M, Whitlow S, Dibb J, Grootes P, Taylor K, Whung P-Y, Fosberry L, Wake C, Welch K (1995) An ice-core based, late Holocene history for the Transantarctic Mountains, Antarctica. In: Elliot DH (ed) Contributions to Antarctic geology IV. Antarctic Research Series, vol. 67. American Geophysical Union, Washington, DC, pp 33–46

    Google Scholar 

  • Mensing TM (1991) High-titanium basalt and dolerite clasts from the Elephant and Reckling moraines. Antarctic J US 26(5):26–27

    Google Scholar 

  • Mercer JH (1968) Glacial geology of the Reedy Glacier area, Antarctica. Geol Soc Amer Bull 79:471–486

    Google Scholar 

  • Mercer JH (1985) When did open-marine conditions last prevail in the Wilkes and Pensacola basins, East Antarctica, and when was the Sirius Formation emplaced? South African J Sci 81:243–245

    Google Scholar 

  • Mörner NA (1972) Time scale and ice accumulation during the last 125,000 years as indicated by the Greenland 18O curve. Geol Mag 109:17–24

    Google Scholar 

  • Mörner NA (1974) The Greenland 18O curve: time scale and ice accumulation. Geol Mag 111:431–433

    Google Scholar 

  • Montello JM (1986) The provenance of till at the Elephant Moraine on the East Antarctic ice sheet. M.Sc. Thesis, The Ohio State University, Columbus, OH

    Google Scholar 

  • Moriwaki K, Yoshida Y, Harwood DM (1992) Cenozoic glacial history of Antarctica: a correlative synthesis. In: Yoshida Y (ed) Recent progress in Antarctic Earth Science. Terrapub., Tokyo, Japan, pp 773–780

    Google Scholar 

  • Murozumi M, Chow TJ, Patterson CC (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts, and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acts 33:1247–1294

    Google Scholar 

  • National Geographic (1990) Atlas of the world, 6th edn. National Geographic Society, Washington, DC

    Google Scholar 

  • Nazarov VS (1962) Ice of the Antarctic waters. Results of the I.G.Y. Okeanologiya, No. 6, Soviet Geophysics Committee, Academy of Sciences, Moscow, USSR

    Google Scholar 

  • Newell RE (1981) Further studies of the atmospheric temperature change produced by the Mt. Agung volcanic eruption in 1963. J Volcanol Geotherm Res 11:61–66

    Google Scholar 

  • Nishio F, Katsushima T, Ohmae H (1985 Volcanic ash layers in bare ice areas near the Yamato Mountains, Dronning Maud Land and the Allan Hills, Victoria Land, Antarctica. Anal Glaciol 7:34–41

    Google Scholar 

  • Nriagu JO (ed) (1978) The biogeochemistry of lead in the environment. Parts A and B. Elsevier-North Holland, Amsterdam, The Netherlands

    Google Scholar 

  • Page NR (1971) Subglacial limestone deposits in the Canadian Rocky Mountains. Nature 229:42–43

    Google Scholar 

  • Palais JJ, Kyle PR, Mosley-Thompson E, Thomas E (1987) Correlation of a 3,200 year old tephra in ice cores form Vostok and South Pole stations, Antarctica. Geophys Res Lett 14(8):804–807

    Google Scholar 

  • Palais JM (1980) Snow stratigraphic investigations at Dome C, East Antarctica: a study of depositional and diagenetic processes. M.Sc. Thesis, The Ohio State University, Columbus, OH

    Google Scholar 

  • Palais JM (1985a). Tephra layers and ice chemistry in the Byrd-station ice core, Antarctica. Ph.D. Dissertation, The Ohio State University, Columbus, OH

    Google Scholar 

  • Palais JM (1985b) Particle morphology, composition and associated ice chemistry of tephra layers in the Byrd ice core: evidence for hydrovolcanic eruptions. Anal Glaciol 7:42–48

    Google Scholar 

  • Palais JM (1986/87) Polar ice cores. Oceanus 29(4):55–60

    Google Scholar 

  • Palais JM, Legrand MR (1985) Soluble impurities in the Byrd Station ice core, Antarctica: their origin and sources. J Geophys Res 90(C1):1143–1154

    Google Scholar 

  • Palais JM, Sigurdsson H (1989) Petrologic evidence of volatile emissions from major historic and pre-historic volcanic eruptions IUGG and AGU, Monograph, vol. 52, Washington, DC

    Google Scholar 

  • Palais JM, Whillans IM, Bull C (1982) Snow stratigraphic studies at Dome C, East Antarctica; an investigation of depositional and diagenetic process. Anal Glaciol 3:239–242

    Google Scholar 

  • Palais JM, Kyle PR, Delmas R (1983) Detailed studies of tephra layers in the Byrd Station ice core: preliminary results and interpretation. Antarctic J US 18(5):109–110

    Google Scholar 

  • Parker BC, Heiskill LE, Thompson WJ, Zeller WJ, Zeller EJ (1978) Non-biogenic fixes of nitrogen in Antarctica and some ecological implications. Nature 271:651–652

    Google Scholar 

  • Patterson C, Boutron C, Petrov VN (1987) Lead records in Antarctic ice: Changes in global atmospheric concentrations during the past 150,000 years. Antarctic J US 22(5):85–87

    Google Scholar 

  • Peel D (1986) Is lead pollution of the atmosphere a global problem? Nature 323:200

    Google Scholar 

  • Perkins S (2006) Cold and deep: Antarctica’s Lake Vostok has two big neighbors. Science News 169 (February 4):69–70

    Google Scholar 

  • Perkins, S (2008) Down with carbon. Science News, May 10:18–23

    Google Scholar 

  • Peterson JA, Moresby JF (1979) Subglacial travertine and associated deposits in the Carstensz area, Irian Jaya, Republic of Indonesia. Zeitschrift für Gletscherkunde und Glazialgeologie 15:23–29

    Google Scholar 

  • Petit JR, Briat M, Royer A (1981) Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293:391–394

    Google Scholar 

  • Petit JR et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Picciotto E, De Maere X, Friedman I (1960) Isotopic composition and temperature of formation of Antarctic snow. Nature 187:857

    Google Scholar 

  • Picciotto E, Cameron R, Crozaz G, Deutsch S, Wilgain S (1968) Determination of the rate of snow accumulation at the Pole of Relative Inaccessibility, Eastern Antarctica: a comparison of glaciological and isotopic methods. J Glaciol 7(50):273–287

    Google Scholar 

  • Picciotto E, Crozaz G, De Breuck W (1971) Accumulation on the South Pole-Queen Maud Land Traverse, 1964–1968. In: Crary AP (ed) Antarctic snow and ice studies II. Antarctic Research Series, vol. 16, pp 257–315

    Google Scholar 

  • Robin G, de Q (1988) The Antarctic ice sheet, its history and response to sea level and climatic changes over the past 100 million years. Paleo Paleo Paleo 67:31–50

    Google Scholar 

  • Robok A (1981) A latitudinally dependent volcanic dust veil index, and its effect on climate simulations. J Volcanol Geotherm Res 11:67–80

    Google Scholar 

  • Rozanski K, Araguas-Araguas L, Conginatini R (1993) Isotopic patterns of modern global precipitation. In: Climate change in continental isotopic records. Geophysics Monograph, vol. 78. American Geophysical Union, Washington, DC, pp 1–36

    Google Scholar 

  • Rutford RH, Craddock C, Bastien TW (1968) Late Tertiary glaciation and sea-level changes in Antarctica. Paleo Paleo Paleo 5:15–39

    Google Scholar 

  • Scherer P et al (1997) Allan Hills 88019: an Antarctic H-chondrite with a very long terrestrial age. Meteoritics Planet Sci 32:769–773

    Google Scholar 

  • Schwerdtfeger P (1979) On icebergs and their uses. Cold Regions Science and Technology, vol. 1. Hanover, NH, pp 60–79

    Google Scholar 

  • Score R, Lindstrom MM (1990) Guide to the U.S. collection of Antarctic meteorites 1976–1988; Everything you wanted to know about the meteorite collection (so you don’t have to ask). Antarctic Met Newslett 13(1):1–135. NASA; Solar System Exploration Division, Planetary Science Branch, Publication 82, Lyndon B. Johnson Space Center, Houston, TX

    Google Scholar 

  • Self S, Rampino MR, Barbera JJ (1981) The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. J Volcanol Geothem Res 11:41–60

    Google Scholar 

  • Shaw GE (1989) Aerosol transport from sources to ice sheets. In: Oeschger H, Langway CC Jr (eds) The environmental record in glaciers and ice sheets. Wiley-Interscience, Chichester

    Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317

    Google Scholar 

  • Sipiera PP, Landis CA (1986) A preliminary report of a possible stromatolite find from the Elephant Moraine, Antarctica: a potential directional indicator for ice movement. Lunar Planet Inst Tech Rept 86–01:101–103

    Google Scholar 

  • Smith GJ (1965) Evaporite salts from the dry valleys of Victoria Land, Antarctica. New Zealand J Geol Geophys 8(2):381–382

    Google Scholar 

  • Souchez RA, Lemmens M (1985) Subglacial carbonate deposition: an isotopic study of a present day case. Palaeo Palaeo Palaeo 51:357–364

    Google Scholar 

  • Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene form Antarctic ice cores. Science 310:1317–1321

    Google Scholar 

  • Starinsky A, Katz A (2003) The formation of natural cryogenic brines. Geochim Cosmochim Acta 67(8):1475–1484

    Google Scholar 

  • Stonehouse B (ed) (2002) Encyclopedia of Antarctica and the southern ocean. Wiley, Chichester

    Google Scholar 

  • Stump E, Borg SG, Sheridan MR (1990) Sheridan bluff. In: LeMasurier WE, Thomson JW (eds) Volcanoes of the Antarctic plate and southern oceans. Antarctic Research Series, vol. 48. American Geophysical Union, Washington, DC, pp 136–137

    Google Scholar 

  • Sugden DE, Marchant DR, Denton GH (1993) The case for a stable East Antarctic ice sheet: the background. Geografiska Annaler 75A(4):151–154

    Google Scholar 

  • Swithinbank CWM (1969) Giant icebergs in Weddell Sea, 1967–1968. Pol Rec 14(91):477–478

    Google Scholar 

  • Taylor KS (1986) Lithologies and distribution of clasts in the Elephant Moraine, Allan Hills, southern Victoria Land, Antarctica. M.Sc. Thesis, Kent State University, Kent, OH

    Google Scholar 

  • Tessier A, Turner DR (1995) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester

    Google Scholar 

  • Thompson EM (Mosley-Thompson, E) (1979) 911-years of microparticle deposition at the South Pole: a climatic interpretation. Ph.D. Dissertation, The Ohio State University, Columbus, OH

    Google Scholar 

  • Thompson LG (1977a) Microparticles, ice sheets and climate. Institute of Polar Studies, Report No. 64. The Ohio State University, Columbus, OH

    Google Scholar 

  • Thompson LG (1977b) Variations in microparticle concentration, size distribution, and elemental composition found in Camp Century, Greenland, and Byrd Station, Antarctica, deep ice cores, Proceedings of Grenoble Symposium, 1975. IAHS-AISH Pub. No. 118:351–364

    Google Scholar 

  • Thompson LG, Mosley-Thompson E (1981) Temporal variability of microparticle properties in polar ice sheets. J Volcanol Geotherm Res 11:11–27

    Google Scholar 

  • Thompson LG, Hamilton WL, Bull C (1975) Climatological implications of microparticle concentrations in the ice core from Byrd Station, Western Antarctica. J Glaciol 14:433–444

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Petit JR (1981) Glaciological and climatological interpretation of microparticle concentrations from the French 905-meter Dome C, Antarctica, core. In: Sea level, ice, and climate. IAHS Pub. No. 131:227–234

    Google Scholar 

  • Thompson, S.L. and S.H. Schneider, 1981. Carbon dioxide and climate: ice and ocean. Nature, 290:9–10

    Google Scholar 

  • Thornton I (ed) (1983) Applied environmental geochemistry. Academic Press, London

    Google Scholar 

  • Tomblin JF (1979) The South Sandwich Islands II. The Geology of Candlemas Island. British Antarct. Survey, Science Report 92:1–33

    Google Scholar 

  • Vail PR, Hardenbol J (1979) Sea-level changes during the Tertiary. Oceanus 22:71–79

    Google Scholar 

  • Walker GPL (1981) Generations and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11:81–92

    Google Scholar 

  • Watanabe O et al (2003) Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422:509–512

    Google Scholar 

  • Wayt Gibbs W (2001) Out in the cold. Scient Amer 284(3):16–17

    Google Scholar 

  • Webb P-N (1990) The Cenozoic history of Antarctica and its global impact. Antarctic Sci 2:3–21

    Google Scholar 

  • Webb P-N, Harwood DM, McKelvey BC, Mercer JH, Stott LD (1983) Late Neogene and older Cenozoic microfossils in high elevation deposits of the Transantarctic Mountains: Evidence for marine sedimentation and ice volume variation on the East Antarctic cratons. Antarctic J US 18(5):96–97

    Google Scholar 

  • Webb P-N, Harwood DM, McKelvey BC, Mercer JH, Stott LD (1984) Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology 12(5):287–291

    Google Scholar 

  • Weeks WF, Campbell WJ (1973) Icebergs as a freshwater source: an appraisal. J Glaciol 12:207–233

    Google Scholar 

  • Weeks WF, Mellor M (1978) Some elements of iceberg technology. In: Husseiny AA (ed) Iceberg utilization. Pergamon Press, Oxford, pp 45–98

    Google Scholar 

  • Wellman P, Tingey RJ (1981) Glaciation, erosion and uplift over part of East Antarctica. Nature 192:142–143

    Google Scholar 

  • Wilch TI, Denton GH, Lux DR, McIntosh WC (1993) Limited Pliocene glacier extent and surface uplift in middle Taylor Valley, Antarctica. Geografiska Annaler 75A(4):331–351

    Google Scholar 

  • Wörner G, Viereck L, Hertogen J, Niephaus H (1989) The Mt. Melbourne volcanic field. (Victoria Land, Antarctica) II: geochemistry and magma genesis. In: Damaske D, Durbaum HJ (eds) GANOVEX IV, 1984/85. Geologisches Jahrbuch, Reihe B, 38. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

    Google Scholar 

  • Wolff EW, Peel DA (1985) Closer to a true value for heavy metal concentrations in recent snow by improved contamination control. Anal Glaciol 7:61–69

    Google Scholar 

  • Wood JR (1975) Thermodynamics of brine-salt equilibria I. The system NaCl-KCl-CaCO2-MgCl2-H2O and NaCl-MgSO4-H2O at 25°C. Geochim Cosmochim Acta 39:1147–1163

    Google Scholar 

  • Young NW, Pourchet M, Kotlyakov VM, Korolev PA, Dyugerov MB (1982) Accumulation distribution in the IAGP area, Antarctica: 90°E. Anal Glaciol 3:333–338

    Google Scholar 

  • Zhang L, Liu J, Zhou H, Chen Z (1979) Oxygen isotope fractionation in the quartz-water system. Econ Geol 84:1643–1650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Faure .

Appendix

Appendix

17.12.1 Chemical composition of snow at Base Roi Baudouin, Amundsen-Scott, and Plateau stations (Hanappe et al. 1968)

 

Na

Mg

K

Ca

Mn

Fe

Ni

(parts per billion per gram (ppb))

Base Roi Baudouin (40 g/cm 2 /y) a

1.

    

0.15 ± 0.03

11 ± 1

0.42 ± 0.08

2.

226 ± 11

27 ± 3

44 ± 7

27 ± 3

 

15 ± 3

0.80 ± 0.15

       

0.74 ± 0.08

3.

    

0.19 ± 0.02

 

0.42 ± 0.04

4.

251 ± 12

31 ± 3

30 ± 4

18 ± 3

0.05 ± 0.01

2.6 ± 0.4

0.26 ± 0.04

      

2.3 ± 0.3

0.29 ± 0.03

5.

265 ± 13

28 ± 3

16 ± 2

7.1 ± 1.5

0.12 ± 0.02

2.8 ± 0.3

0.13 ± 0.04

Avg.

247 ± 20

29 ± 2

30 ± 14

17 ± 10

0.13 ± 0.06

6.7 ± 5.9

0.44 ± 0.25

Amundsen-Scott Station (6 g/cm 2 /y)

6.

9 ± 1

 

<15

 

0.75 ± 0.03

 

0.05 ± 0.02

7.

    

0.29 ± 0.03

 

0.13 ± 0.04

Avg.

9 ± 1

 

<15

 

0.52 ± 0.33

 

0.09 ± 0.06

Plateau Station (2.8 g/cm 2 /y)

8.

18 ± 2

3.4 ± 0.4

4.5 ± 0.9

0.6 ± 0.3

<0.02

7.0 ± 0.7

<0.07

9.

35 ± 3

6.4 ± 0.6

13 ± 2

13 ± 2

0.24 ± 0.04

6.5 × 0.7

0.2 ± 0.1

     

0.21 ± 0.03

 

0.17 ± 0.03

10.

    

0.27 ± 0.03

 

0.16 ± 0.03

11.

32 ± 2

4.9 ± 1.5

3.5 ± 0.7

8.6 ± 0.9

0.41 ± 0.04

7.4 ± 0.7

0.062 ± 0.01

     

0.37 ± 0.04

7.1 ± 0.4

0.063 ± 0.006

       

0.064 ± 0.007

Avg.

28 ± 9

4.9 ± 1.5

7.0 ± 5.2

7.4 ± 6.3

0.25 ± 0.14

7.0 ± 0.4

0.113 ± 0.06

  1. aRate of meteoric precipitation of water.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Faure, G., Mensing, T.M. (2011). The East Antarctic Ice Sheet. In: The Transantarctic Mountains. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9390-5_17

Download citation

Publish with us

Policies and ethics