Skip to main content

Independent-Double-Gate FINFET SRAM Cell for Drastic Leakage Current Reduction

  • Chapter
  • First Online:
  • 1130 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 66))

Abstract

The decreased feature size of metal-oxide-semiconductor (MOS) devices in ultra-large-scale-integrated circuits (ULSIs) requires the nano-scale complementary MOS (CMOS) fabrication technology. As silicon devices are scaled down to the nanometer regime, the device technology is facing to several difficulties. Standby power consumption in CMOS devices is now one of the most serious problem and becoming a limiting factor in MOSFET scaling [1]. Short channel effects (SCEs) such as threshold voltage (V th ) roll off and sub-threshold slope (S-factor) degradation causes significant increased in power consumption. Catastrophic increase in static power consumption due to shot channel effects (SCEs) becomes the serious problem in future VLSI circuits. Especially, the leakage current in the SRAM array is the most critical issue for a low-power SoC because it occupies the considerable part of LSIs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.J. Frank, Tech. Digest Int. Elec. Dev. Meeting, 643–646 (2002)

    Google Scholar 

  2. T. Sekigawa, Y. Hayashi, Solid State Electron. 27, 827 (1984)

    Article  Google Scholar 

  3. D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. King, J. Bokor, C. Hu, IEEE Trans. Electr. Dev. 47, 2320 (2000)

    Article  Google Scholar 

  4. H. Kawasaki, K. Okano, A. Kaneko, Y. Yagishita, T. Izumida, T. Kanemura, K. Kasai, T. Ishida, T. Sasaki, Y. Takeyama, N. Aoki, N. Ohtsuka, K. Suguri, K. Eguchi, Y. Tsunashima, S. Inaba, K. Ishimaru, H. Ishiuchi, Digest of Technical Papers, IEEE VLSI Technology Symposium (2006), p. 86–87

    Google Scholar 

  5. A. Dixit, K.G. Anil, E. Baravelli, P. Roussel, A. Mercha, C. Gustin, M. Bamal, E. Grossar, R. Rooyackers, E. Augendre, M. Jurczak, S. Biesemans, K. De Meyer, Tech. Digest Int. Elec. Dev. Meeting (2006), pp. 709–712

    Google Scholar 

  6. A. Bansal, S. Mukhopadhyay, K. Roy, IEEE Trans. Electr. Dev. 47, 1409 (2007)

    Article  Google Scholar 

  7. P. Francis, A. Terao, D. Flandre, F. Van de Wiele, IEEE Trans. Electr. Dev. 41, 715 (1994)

    Article  Google Scholar 

  8. Y. Liu, M. Masahara, K. Ishii, T. Sekigawa, H. Takashima, H. Yamauchi, E. Suzuki, IEEE Electr. Dev. Lett. 25, 510 (2004)

    Article  Google Scholar 

  9. D.M. Fried, J.S. Duster, K.T. Kornegay, IEEE Electr. Dev. Lett. 24, 59 (2003)

    Article  Google Scholar 

  10. L. Mathew, Y. Du, S. Kalpat, M. Sadd, M. Zavala, T. Stephens, R. Mora, R. Rai, S. Becker, C. Parker, D. Sing, R. Shimer, J. Sanez, A.V.-Y. Thean, L. Prabhu, M. Moosa, B.-Y. Nguyen, J. Mogab, G.Workman, A. Vandooren, Z. Shi, M. Chowdhury, W. Zhang, J. Fossum, Digest of Technical Papers, IEEE VLSI Technology Symposium (2005), pp. 200– 201

    Google Scholar 

  11. L. Mathew, Y. Du, A. Thean, M. Sadd, A. Vandooren, C. Parker, T. Stephens, R. Mora, R. Rai, M. Zavala, D. Sing, S. Kalpat, J. Hughes, R. Shimer, S. Jallepalli, G. Workman, W. Zhang, J. Fossom, B. White, B. Nguyen, J. Mogab, in Proceedings of the IEEE SOI Conference (2004), p. 187

    Google Scholar 

  12. S. O’uchi, M. Masahara, K. Endo, Y.X. Liu, T. Matsukawa, K. Sakamoto, T. Sekigawa, H. Koike, E. Suzuki, ICICE Trans. E91-C, 534 (2008).

    Google Scholar 

  13. K. Endo, M. Masahara, Y.X. Liu, T. Matsukawa, K. Ishii, E. Sugimata, H. Takashima, H. Yamauchi, E. Suzuki, Jpn. J. Appl. Phys 45, 3097 (2006)

    Article  Google Scholar 

  14. M. Koh-Masahara, K. Esuga, H. Furumoto, T. Shirahata, E. Seo, K. Shibahara, S. Yokoyama, M. Hirose, Jpn. J. Appl. Phys 38, 2324 (1999)

    Article  Google Scholar 

  15. M. Togo, T. Fukai, Y. Nakahara, S. Koyama, M. Makabe, E. Hasegawa, M. Nagase, T. Matsuda, K. Sakamoto, S. Fujiwara, Y. Goto, T. Yamamoto, T. Mogami, M. Ikeda, Y. Mamagata and K. Imai, Digest of Technical Papers, IEEE VLSI Technology Symposium, 2004, p. 88

    Google Scholar 

  16. M. Masahara, Y. Liu, K. Sakamoto, K. Endo, T. Matsukawa, K Ishii, T. Sekigawa, H. Yamauchi, H Tanoue, S. Kanemaru, H. Koike and E. Suzuki, IEEE Trans. Electron Devices 52, 2046 (2005).

    Article  Google Scholar 

  17. Y.X. Liu, S. Kijima, E. Sugimata, M. Masahara, K. Endo, T. Matsukawa, K. Ishii, K. Sakamoto, T. Sekigawa, H. Yamauchi, Y. Takanashi, E. Suzuki, IEEE Trans. Nanotechnology 5, 201 (2007)

    Google Scholar 

  18. M. Masahara, R. Surdeanu, L. Witters, G. Doornbos, V.H. Nguyen, G. Van den Bosch, C. Vrancken, K. Devriendt, F. Neuilly, E. Kunnen, M. Jurczak, S. Biesemans, IEEE Electron Device Lett. 28, 217 (2007)

    Article  Google Scholar 

Download references

Acknowledgement The author would like to thank Ms. Yuki Ishikawa, Dr. Yongxun Liu, Dr. Takashi Matsukawa, Dr. Shin-ichi O’uch, Dr. Meishoku Masahara, Mr. Junichi Tsukada, Mr. Kenichi Ishii, Ms. Hiromi Yamauchi, and Dr. Eiichi Suzuki for their support and helpful discussions.This work was supported in part by the Innovation Research Project on Nanoelectronics Materials and Structures t from the METI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Endo, K. et al. (2010). Independent-Double-Gate FINFET SRAM Cell for Drastic Leakage Current Reduction. In: Amara, A., Ea, T., Belleville, M. (eds) Emerging Technologies and Circuits. Lecture Notes in Electrical Engineering, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9379-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9379-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9378-3

  • Online ISBN: 978-90-481-9379-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics