Skip to main content

Plant Resistance to Anthropogenic Toxicants: Approaches to Phytoremediation

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

The problem of soil preservation and restoration has became more intense due to continued deterioration of the ecological systems of the world. This problem is especially important for Azerbaijan, where environmental pollution by heavy metals and oil products is increasing. Though the nature of toxicity of these two factors is different, they both affect plant productivity, including agricultural crops and human health. This review is devoted to the analysis of modern conceptions on fundamental physiological mechanisms of plant resistance to toxic levels of heavy metals and organic pollutants in soils, also of their uptake and translocation in plants. Different aspects of the nature of toxicity of metals and petroleum hydrocarbons and genetic basis of plant resistance to them, hyperaccumulation mechanisms of heavy metals by some plant species and approaches to phytoremediation of both inorganic and organic pollutants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam G, Duncan HJ (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Health 21:353–357

    Article  CAS  Google Scholar 

  • Adriano DC, Bolan NS, Vangronsveld J, Wenzel WW (2005) Heavy metals. In: Hille D (ed) Encyclopedia of Soils in the Environment, Elsevier, Amsterdam, pp 175–182

    Google Scholar 

  • Aijen (2004) Importance of root growth parameters to Cd and Zn acquisition by non-hyperaccumulator and hyperaccumulator plants. Dissert Hohenheim University, Verlag Grauer Beuren, Stuttgart

    Google Scholar 

  • Alirzayeva EG, Shirvani TS, Yazici MA, Alverdiyeva SM, Shukurov ES, Ozturk L, Ali-zade VM, Cakmak I (2006) Heavy metal accumulation in Artemisia and foliaceous lichen species from the Azerbaijan flora. Forest Snow Lands Res 80:339–348

    Google Scholar 

  • Ali-zade VM, Shirvani TS, Schmohl N, Alirzayeva EG, Annagiyeva MA, Fecht M, Horst WJ (2001) Protein content and protease activity in roots of Zea mays (L.) in response to short-term aluminum treatment. In: Horst W et al (eds) Plant nutrition: Food security and sustainability of agro-ecosystems. Kluwer Academic Publishers, Netherlands, pp 518–519

    Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresource Techn 79:273–276

    Article  CAS  Google Scholar 

  • Almeida AAF, Valle RR, Mielke MS, Gomes FP (2007) Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J Plant Physiol 19(2):83–98

    Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27(13):2630–2636

    Article  CAS  Google Scholar 

  • Andonov AV (2005) Cadmium accumulation and toxicity in barley (H. vulgare L.). In: Metal Fluxes and Stresses in Terrestrial Ecosystems. Abstracts of Workshop, 15–20 October 2005, Ascona, Switzerland, p 12

    Google Scholar 

  • Anonymous (1989) Mishaps cause three oil spills off U.S. Oil Gas J 87: 22

    Google Scholar 

  • Antosiewicz DM (1992) Adaptation of plants to environment polluted with heavy metals. Acta Soc Bot Pol 61:281–299

    Article  CAS  Google Scholar 

  • Association for Environmental Health and Sciences (1998) http://www.aehs.com/publications/ catalog/contents/Volume1.pdf

  • Awobajo AO (1981) An analysis of oil spill incidents in Nigeria. In: Proceedings of national seminar on petroleum industries and nigerian environment. Warri, Nigeria, pp 57–63

    Google Scholar 

  • Ayotamuno JM, Kogbara RB (2007) Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. African J Biotechnol 6(11):1332–1337

    CAS  Google Scholar 

  • Babayev M (2003) Soil degradation in Azerbaijan. In: Proceedings of MAB Azerbaijan national committee 2:41–55

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soil. In: Terry N, Banuelos GS (eds) Phytoremediation. Lewis Publishers, Boca Raton, ISBN 1-56670-450-2, pp 85–108

    Google Scholar 

  • Bakhshieva Ch T, Akimova NF (2001) Change of soil properties under oil and oil-field sewage contamination (in Russian). Proc Azerbaijan Soil Sci Soc 8:141–142

    Google Scholar 

  • Balsberg-Pablsson AM (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants: A literature review. Water Air Soil Poll 47:287–315

    Article  Google Scholar 

  • Bashmakov DI, Lukatkin AS (2002) Accumulation of heavy metals by some higher plants under different habitat conditions. Agrochemistry 9:66–71

    Google Scholar 

  • Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2006) Function of phytochelatin synthase in catabolism of glutathione-conjudates. Plant J 49(4):740–749

    Article  CAS  Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 434–476

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals (Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining). CAB International, Wallingford

    Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linn. (Cruciferae). Proc R Soc LondSect B 203:387–403

    Article  CAS  Google Scholar 

  • Brown G, Porembski S (2000) Phytogenic hillocks and blow-outs as ‘safe sites’ for plants in an oil–contaminated area of northern Kuwait. Environ Conserv 27:242–249

    Article  Google Scholar 

  • Burdin KS, Polyakova EE (1987) Metallothioneins, their structure and function. Prog Modern Biol (in Russian) 103:390–400

    Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    Article  PubMed  CAS  Google Scholar 

  • Chaineau CH, Morel JL, Oudot J (1997) Phytotoxicity and plant uptake of fuel oil hydrocarbons. J Environ Qual 26:1478–1483

    Article  CAS  Google Scholar 

  • Chicarelli MI, Eckardt CB, Owenn CR, Maxwell JR, Eglington G, Hutton RC, Eaton AN (1990) Application of inductivity coupled plasma mass spectrometry in the determination of organometallic compounds in chromatographic fractions from organic rich shales. Organ Geochem 15:26–274

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR, Walker JD (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Anderson AP, Schwab AP, Hsu FC (1996) Phytoremediation soils contaminated with organic pollutants. Adv Agron 56: 55–114

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107: 315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Dixit VS, Pant A (2000) Hydrocarbon degradation and protease production by Nocardiopsis sp. NCIM 5124. Letters Applied Microbiol 30:67–69

    Article  CAS  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 3–12

    Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schuurmann G, Markert B (eds) Ecotoxicology: ecological fundamentals, chemical exposure and biological effects. Wiley Publication House, Heidelberg, pp 587–620

    Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. Forest Snow Lands Res 80(3):251–274

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:6838–6842

    Article  Google Scholar 

  • Guo T, Zhang G, Zhou M, Wu F, Chen J (2004) Effects of aluminum and cadmium toxicity on growth and antioxidant activities two barley genotypes with different Al resistance. Plant Soil 258:241–248

    Article  CAS  Google Scholar 

  • Hagar R (1989) Huge cardo of North slope oil spilled. Oil Gas J 87:26–27

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31:1561–1569

    Article  PubMed  CAS  Google Scholar 

  • Harter RD (1983) Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci Soc Am J 47:47–51

    Article  CAS  Google Scholar 

  • Heckathorn SA, Mueller JK, LaGuidice S, Zhu B, Berrett T, Blair B, Dong Y (2004) Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. Am J Bot 91: 1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Herrero EM, Lopez-Gonzalvez A, Ruiz MA, Lucas-Garcia JA, Barbas C (2003) Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleifera and Helianthus annus grown in contaminated soils. Int J Phytoremed 5:153–167

    Article  CAS  Google Scholar 

  • Hesse P (1971) A textbook of soil chemical analysis. Murray, London

    Google Scholar 

  • Hinsinger P, Plassard C, Jailard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88(1–3):210–213

    Article  CAS  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminum toxicity and resistance of higher plants: review. Zeitschrift fur Pflanzenernahrung und Bodenkunde 158:419–428

    Article  CAS  Google Scholar 

  • Huang X-D, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical J 81:139–147

    Article  CAS  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78

    Article  CAS  Google Scholar 

  • Juhanson J, Truu J, Heinaru E, Heinaru A (2007) Temporal dynamics of microbial community in soil during phytoremediation field experiment. J Environ Engineer Lands Manag 4:213–220

    Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Kaschl A, Romheld V, Chen Y (2002a) Binding of cadmium, copper and zinc to humic substances originating from municipal solid waste compost. Israel J Chem 42:89–98

    Article  CAS  Google Scholar 

  • Kaschl A, Romheld V, Chen Y (2002b) Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. J Environ Qual 31:1885–1892

    Article  PubMed  CAS  Google Scholar 

  • Kaschl A, Romheld V, Chen Y (2002c) The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Sci Total Environ 291: 45–57

    Article  PubMed  CAS  Google Scholar 

  • Keltjens WG, Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    Article  CAS  Google Scholar 

  • Khudsar T, Mahmooduzzafar IM, Sairam RK (2004) Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Plant 48:255–260

    Article  CAS  Google Scholar 

  • Kim JG, Cho NH, Kim NB, Cho HI, Yoon YM, Ok YS, Kim DY, Kim SH (2003) Bioremediation method of heavy metal contaminated soils. Patent No KR 2003079062 A 20031010 (in Korean)

    Google Scholar 

  • Kolodyazhnaya Ya S, Kochetov AV, Shumnyi VK (2006) Transgenesis as a mode of increasing plant resistance to elevated heavy metal concentrations. Progr Modern Biol 126:456–461

    Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66(10):1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 2:5–25

    Google Scholar 

  • Li HY, Tang SR, Zheng JM (2003) Copper contents in two plant species of Compositae growing on copper mining spoils. Nonhcun Shengtai Huanjing 19:53–55

    Google Scholar 

  • Li X, Feng Y, Sawatsky N (1997) Importance of soil-water relations in assessing the endpoint of bioremediated soils. Plant Soil 192:219–226

    Article  CAS  Google Scholar 

  • Liu D, Li T, Yan CE, Islam E, Tsin CF, Mahmud K (2008) Influence of lead on enzyme activity of antioxidant protection and leaves ultrastructure of two Sedium alfredii Hance ecotypes. Plant Physiol 55:73–82

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotech Advances 18:23–34

    Article  CAS  Google Scholar 

  • Malallah G, Afzal M, Kurian M, Gulshan A, Dhami MSI (1998) Impact of oil pollution on some desert plants. Environ Int 24:919–924

    Article  CAS  Google Scholar 

  • Mamedov G Sh (2003) Ecological issues of Azerbaijan: Problems, assessment and management. Proceedings of MAB Azerbaijan National Committee 2:149–156

    Google Scholar 

  • Mamedov G Sh (2004) Eco-ethical problems of Azerbaijan: scientific, legal and moral aspects. Elm, Baku

    Google Scholar 

  • Marschner H (1983) Heavy metals. In: Lauchli A, Bieleski RL (eds) Inorganic plant nutrition. encyc. of plant physiology. Springler-Verlag, Berlin, pp 39–49

    Google Scholar 

  • Marschner H, Romheld V (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, (2nd edn) Marcel Dekker Inc, New York, pp 557–579

    Google Scholar 

  • Martin JAR, Corbi JMG, Arias ML (2005) Evaluation of copper and zinc concentration in topsoil of the Ebro Basin my means of teledetection. In: Metal fluxes and stresses in terrestrial ecosystems. Abstracts of Workshop 15–20 October 2005, Ascona Switzerland, p 85

    Google Scholar 

  • McCutcheon SC (1998) Phytoremediation: applications and limitations, PBI Bulletin. Sept. National Res. Council for Canada, Saskatoon, SK, Canada

    Google Scholar 

  • Merkl N (2005) Phytoremediation of petroleum – contaminated soils in the tropics. Margraf Publications GmbH, Scientific Books.

    Google Scholar 

  • Meudec A, Poupa N, Dussauze J, Deslandes E (2007) Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Sci Total Environ 381:146–156

    Article  PubMed  CAS  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb, Cu and Cd binding with mucilage exudates from maize (Zea mays L.) roots. Bio Fertil Soils 2:29–34

    Article  Google Scholar 

  • Morishita T, Boratynski JK (1992) Accumulation of cadmium and other metals in organs of plants growing around metal smelters in Japan. Soil Sci Plant Nutr 38:781–785

    Article  CAS  Google Scholar 

  • Muratova A, Wittenmayer L, Golubev S, Pozdnyakova N, Merbach W, Turkovskaya O (2007) Effect of a polycyclic aromatic hydrocarbon and PGPR inoculant on root exudation of Sorghum bicolor L. In: Intern. Conference on “Rhizoshpere 2. Session 12 – Rhizoremediation and Soil Pollution”, Montpellier, France, 26–31 August

    Google Scholar 

  • Naidu R, Oliver D, McConnell S (2003) Heavy metal phytotoxicity in soils. Proceedings of the 5th national workshop on the assessment of site contamination. pp 235–241

    Google Scholar 

  • Obroucheva NV, Bystrova EI, Ivanov VB, Antipova OV, Seregin IV (1998) Root Growth Responses to Lead in Young Maize seedlings. Plant Soil 200:55–61

    Article  CAS  Google Scholar 

  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EAH, Reardon KF (2007) Comparison of plant families in greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J Environ Qual 36:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1(4):307–320

    CAS  Google Scholar 

  • Pena-Castro JM, Barrera-Figueroa BE, Fernandez-Linares L, Ruiz-Medrano R, Xoconostle-Cazares B (2006) Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress. Plant Sci 170:724–731

    Article  CAS  Google Scholar 

  • Pilcher CWT, Sexton DB (1993) Effects of the gulf war oil spills and well-head fires on the avifauna and environment of Kuwait. Sandgrouse 15:6–17

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Reis JC (1996) Environmental control in petroleum engineering. Houston Gulf Publish., Houston

    Google Scholar 

  • Robinson NJ, Tommey AM, Kuske A, Jackson PJ (1993) Plant metallothioneins. Biochem J 295: 1–10

    PubMed  CAS  Google Scholar 

  • Robson DB, Knight JD, Farrell RE, Germida JJ (2003) Ability of cold-tolerant plants to grow in hydrocarbon-contaminated soil. Int J Phytoremed 5(2):105–123

    Article  CAS  Google Scholar 

  • Ross SM (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Ryan KM, Firestone MK (2001) Enhanced phenantrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918

    Article  Google Scholar 

  • Samkaeva LT, Revin VV, Rybin YI, Kulagin AN, Novikova OV, Pugaev SV (2001) A study on the accumulation of heavy metals by plants. Biotechnology 1:54–59

    Google Scholar 

  • Sanita di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Enviorn Exp Bot 41:105–130

    Article  Google Scholar 

  • Schaaf G, Erenoglu BE, von Wiren N (2004) Physiological and biochemical characterization of metal-phytosiderophore transport in graminoceous species. Soil Sci Plant Nutr 50(7):989–995

    Article  CAS  Google Scholar 

  • Schat H, Llugany, M, Bernhard R (2000) Metal-soecific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water, Chap.9. Lewis Publ., London

    Google Scholar 

  • Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of genus Allysum. Physiol Plant 105:39–44

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Schwendinger RB (1968) Reclamation of soil contaminated with oil. J Institute of Petroleum 54:182–197

    Google Scholar 

  • Segarra CI, Casalongue CA, Pinedo ML, Cordo CA, Conde RD (2002) Changes in wheat leaf extracellular proteolytic activity after infection with Septoria tritici. J Phytopathol 150(3): 105–111

    Article  Google Scholar 

  • Senthilkumar P, Prince WSPM, Sivakumar S, Subbhuraam CV (2005) Prosopis juliflora – a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils. Chemosphere 60(10):1493–1496

    Article  PubMed  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead and their toxic action on higher plants. Plant Physiol 48:606–630

    Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physological role of nickel and its toxic action on higher plants. Plant Physiol 53:285–308

    Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Role of root and shoot tissues in transport and accumulation of cadmium, lead, nickel and strontium. Plant Physiol 55:3–26

    Google Scholar 

  • Short JW, Lindeberg MR, Harris PM, Maslko J, Rice SD (2002) Vertical oil distribution within intertidal zone 12 years after the Exxon Valdez oil spill in Prince William Sound, Alaska. Proceedings of 25th arctic and marine oilspill program, Calgary, Alberta, Canada, June 11–13, pp 57–72

    Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer Ch W (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69(1):483–489

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui S, Adams VA, Schollion J (2001) The phytotoxicity and degradation of diesel hydrocarbons in soil. J Plant Nutr Soil Sci 164:631–635

    Article  CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecolog Engineer 18:647–658

    Article  Google Scholar 

  • Takeda R, Yoshimura N, Matsumoto S, Komemushi S (2005) Accumulation of heavy metals by Japanese weeds and their seasonal movement. Contam Soils 9:349–359

    CAS  Google Scholar 

  • Temp GA (1991) Nickel in plants in relation with its toxicity. In: Alekseeva-Popova NV (ed) Resistance of wild species to heavy metals. Leningrad, Lenuprizdat, pp 5–15

    Google Scholar 

  • Toderich KN, Tsukatani T, Black CC, Takabe K, Katayama Y (2002) Adaptations of plants to metal/salt contained environments: glandlar structure and salt excretion. Discussion Paper No 552, Kyoto Institute of Economic Research, Kyoto University

    Google Scholar 

  • Tung G, Temple PJ (1996) Uptake and localization of lead in corn (Zea mays L.) seedlings: A study by histochemical and electron microscopy. Sci Total Environ 188:71–85

    Article  PubMed  CAS  Google Scholar 

  • Tyler L, McBride MB (1982) Mobility and extractability of cadmium, copper, nickel and zinc in organic and mineral soil columns. Soil Sci 134:198–205

    Article  CAS  Google Scholar 

  • Van Epps A (2006) Phytoremediation of petroleum hydrocarbons. Technical publication report, environmental careers organization for US environmental protection agency

    Google Scholar 

  • Van Steveninck RFM, Van Steveninck ME, Wells AJ, Fernando DR (1990) Zinc tolerance and the binding of zinc as zinc phytate in Lemna minor. X–ray microanalytical evidence. J Plant Physiol 137:140–146

    Article  Google Scholar 

  • Vasileva-Tonkova E, Galabova D (2003) Hydrolitic enzymes and surfactants of bacterial isolates from lubricant-contaminated wastewater. Z Naturforsch 58c:87–92

    Google Scholar 

  • Vodnik D, Jentschke G, Fritz E, Gogala N, Godbold DL (1999) Root-applied cytokinin reduced lead uptake and affects its distribution in Norway spruce seedlings. Physiol Plant 106: 75–81

    Article  CAS  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localisation of cadmium and cadmium binding peptides in tobacco leaves. Implications of a transport function for cadmium binding peptides. Plant Physiol 92:1086–1093

    Article  PubMed  CAS  Google Scholar 

  • Vrinceanu N, Motelica D, Dumitru M, Gament El, Tanase V, Calciu I (2005) Aspects of establishing some measures to reclaim soils polluted with heavy metals in Copsa Mica. In: Abstr. NATO ASI School on advanced sciences and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. 17–28 August 2005, Zhitomir, Ukraine, p 33

    Google Scholar 

  • Wolfe NL, Hoehamer CF (2003) Enzymes used by plants and microorganisms to detoxify organic compounds. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: Transformation and Control of Contaminants, New York, Wiley, pp 159–87

    Google Scholar 

  • Wunschmann J, Beck A, Meyer L, Letzel T, Grill E, Lendzian KJ (2007) Phytochelatins are synthesized by two vacuolar serine carboxypeptidases in Saccharomyces cerevisiae. FEBS Letters 581:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  PubMed  CAS  Google Scholar 

  • Xu JG, Johnson RL (1997) Nitrogen dynamics in soils with different hydrocarbon contents planted to barley and field pea. Canadian J Soil Sci 77:453–458

    Article  Google Scholar 

  • Yang X, Baligar VC, Martens DC, Clark RB (1995) Influx, transport and accumulation of cadmium in plant species grown at different Cd2+ activities. J Environ Sci Health 30:569–583

    Article  Google Scholar 

  • Yoshihiro K, Tomoshiro U, Miwa O, Tetsuro M, Tsuyoshi N, Masayoshi M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45(12):1749–1758

    Article  Google Scholar 

  • Yoshitomi KJ, Shann JR (2001) Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization Soil Biol Biochem 33(12–13):1769–1776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valida Ali-Zade , Esmira Alirzayeva or Tamilla Shirvani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ali-Zade, V., Alirzayeva, E., Shirvani, T. (2010). Plant Resistance to Anthropogenic Toxicants: Approaches to Phytoremediation. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_9

Download citation

Publish with us

Policies and ethics