Skip to main content

Structural and Functional Adaptations in Plants for Salinity Tolerance

  • Chapter
  • First Online:
Book cover Plant Adaptation and Phytoremediation

Abstract

Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. Morpho–anatomical adaptations include xeromorphic characteristics like thick epidermis and sclerenchyma, well developed bulliform cells, increased density of trichomes and increased moisture retaining capacity by increasing cell size and vacuolar volume. Development of excretory structures like vesicular hairs and salt glands is another major structural adaptation and very crucial for salt tolerance. Physiological adaptations include restricted toxic ion uptake, increased succulence, osmotic adjustment and exclusion of toxic Na+ and Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy GA, Fountain DW, McManus MT (1998) Observations on the leaf anatomy of Festuca novae–zelandiae and biochemical responses to a water deficit. NZ J Bot 36:113–123

    Google Scholar 

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    PubMed  CAS  Google Scholar 

  • Acharya SN, Darroch BA, Hermesh R, Woosaree J (1992) Salt stress tolerance in native Alberta populations of slender wheatgrass and alpine bluegrass. Can J Plant Sci 72:785–792

    Google Scholar 

  • Akram M, Akhtar S, Javed IH, Wahid A, Rasul E (2002) Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. Int J Agri Biol 4:166–168

    Google Scholar 

  • Allen JA, Chambers JL, Stine M (1994) Prospects for increasing salt tolerance of forest trees: a review. Tree Physiol 14:843–853

    PubMed  Google Scholar 

  • Alvarez JM, Rocha JF, Machado SR (2008) Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): Structure in relation to function. Braz Arch Biol Technol 51:113–119

    Google Scholar 

  • Amarasinghe V, Watson L (1988) Comparative ultrastructure of microhairs in grasses. Bot J Linnean Soc 98:303–319

    Google Scholar 

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:76–112

    Google Scholar 

  • Ashour NI, Serag MS, El–Haleem AKA, Mekki BB (1997) Forage production from three grass species under saline irrigation in Egypt J Arid Environ 37:299–307

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Ashraf M (2003) Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci 165:69–75

    CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotech Adv 27:84–93

    CAS  Google Scholar 

  • Ashraf M, Bashir A (2003) Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198:486–498

    Google Scholar 

  • Ashraf M, Hameed M, Arshad M, Ashraf MY, Akhtar K (2006) Salt tolerance of some potential forage grasses from Cholistan desert of Pakistan. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Netherlands, pp 31–54

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Ashraf M, Yasmin N (1997) Responses of some arid zone grasses to brackish water. Tropenlandwirt 98:3–12

    Google Scholar 

  • Ashraf MY, Ashraf M, Sarwar G (2005) Physiological approaches to improving plant salt tolerance. In: Ramdane D (ed) Crops: growth, quality and biotechnology, WFL Publisher, Helsinki, pp 1206–1227

    Google Scholar 

  • Ball MC (1988) Salinity tolerance in the mangroves, Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning and salt balance. Australian J Plant Physiol 15:447–464

    Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292

    CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    PubMed  CAS  Google Scholar 

  • Delane R, Greenway H, Munns R, Gibbs J (1982) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. I. Relationship between solute concentration and growth. J Exp Bot 33:557–573

    CAS  Google Scholar 

  • Dickison WC (2000) Integrative Plant Anatomy. Massachusetts: Harcourt/Academic Press

    Google Scholar 

  • Drennan P, Pammenter NW (1982) Physiology of salt excretion in the mangrove Avicennia marina (Forsk.) Vierh. New Phytol 91:597–597

    CAS  Google Scholar 

  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of Photosynthesis, Marcel Dekker, New York, pp 859–875

    Google Scholar 

  • Fahn A (1990) Plant anatomy. 4th edn. Oxford: Pergamon Press

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Garcia A, Koyarna M, Yeo AR (1997) Breeding for salt tolerance in crop plants–the role of molecular biology. Acta Physiol Plant 19:427–433

    CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quart Rev Biol 61:313–337

    Google Scholar 

  • Flowers TJ, Hajibagheri MA, Leach RP, Rogers WJ, Yeo AR (1989) Salt tolerance in the halophyte Suaeda maritima. In: Plant water relations and growth under stress: Proceedings of the Yamada conference XXII, Osaka, Japan, pp 173–180

    Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    CAS  Google Scholar 

  • Genkel PA (1954) Soleustoichivost’ rastenii i puti ee napravlennogo povysheniya (Salt Tolerance in plants and methods for its improvement), Akad. Nauk SSSR, Moscow

    Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources. human causes, extent, management, and case studies. University of New South Wales, Sydney

    Google Scholar 

  • Gill KS, Dutt SK (1982) Effect of salinity on stomatal number, size and opening in barley genotypes. Biol Plant 24:266–269

    Google Scholar 

  • Glenn EP (1987) Relationship between cation accumulation and water content of salt–tolerant grasses and a sedge. Plant Cell Environ 10:205–212

    CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Google Scholar 

  • Gorham J, Jones RGW (1990) A physiologist’s approach to improve the salt tolerance of wheat. Rachis 9:20–24

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol Plant Mol Biol 31:149–190

    CAS  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2003) Salt tolerance of a coastal salt marsh grass. Comm Soil Sci Plant Anal 34:2595–2605

    CAS  Google Scholar 

  • Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the salt range (Pakistan) to salinity stress. Flora 203:683–694

    Google Scholar 

  • Hameed M, Ashraf M (2009) Panicum antidotale: A potential grass for salt affected Soils. In: Kafi M, Khan MA (eds) Crop and forage production using saline waters. NAM S and T Centre, Daya Publishing House, New Dehli, pp 334

    Google Scholar 

  • Hameed M, Ashraf M, Naz N (2009) Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322: 229–238

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    PubMed  CAS  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    PubMed  CAS  Google Scholar 

  • Hu Y, Fromm J, Schmidhalter U (2005) Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220:838–848

    PubMed  CAS  Google Scholar 

  • Humphreys MO, Kraus MP, Wyn–Jones RG (1986) Leaf–surface properties in relation to tolerance of salt spray in Festuca rubra ssp. litoralis (G.F.W. Meyer) Auquier. New Phytol 103: 717–723

    Google Scholar 

  • Hwang Y-H, Chen S-C (1995) Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Bot Bull Acad Sin 36:181–188

    CAS  Google Scholar 

  • Jenks MA, Ashworth EN (1999) Plant epicuticular waxes: function, production, and genetics. In: Janick J (ed) Horticultural reviews, vol 23. Wiley, New York, pp 1–68

    Google Scholar 

  • Jeschke WD (1984) K+–Na+ exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. In: Staples RC (ed) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 37–66

    Google Scholar 

  • Karmoker JL, Farhana S, Rashid P (2008) Effects of salinity on ion accumulation in maize (Zea mays L. cv. Bari–7). Bangladesh J Bot 37:203–205

    Google Scholar 

  • Kemp PR, Cunningham GL (1981) Light, temperature and salinity effects on growth, leaf anatomy and photosynthesis of Distichlis spicata (L.) Greene. American J Bot 68:507–516

    Google Scholar 

  • Läuchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Staples RC (ed) Salinity tolerance in plants: Strategies for crop improvement. Wiley, New York, pp 171–187

    Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2007) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    Google Scholar 

  • Lipschitz N, Waisel Y (1974) Existence of salt glands in various genera of the Gramineae. New Phytol 73:507–507

    Google Scholar 

  • Lockhart JA (1965) Analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    PubMed  CAS  Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Consequences for photosynthesis. Plant Physiol 63:700–703

    PubMed  CAS  Google Scholar 

  • Maas EV, Nieman RH (1978) Physiology of plant tolerance to salinity. In: Jung GA (ed) Crop tolerance to sub–optimal land conditions. Amer. Soc. Agron. Spec. Publ., USA, pp 277–299

    Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    CAS  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: A salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:806–810

    Google Scholar 

  • Marcum KB, Murdoch CL (1990) Salt Glands in the Zoysieae. Ann Bot 66:1–7

    Google Scholar 

  • Marcum KB, Murdoch CL (1992) Salt tolerance of the coastal salt marsh grass, Sporobulus virginicus (L.) Kunth New Phytol 120:281–281

    CAS  Google Scholar 

  • Marcum KB, Murdoch CL (1994) Salinity tolerance mechanisms of six C4 turfgrasses. J Am Soc Hortic Sci 119:779–784

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martino CD, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Google Scholar 

  • Massoud FI (1974) Salinity and alkalinity as soil degradation hazards. FAO/UNDP Expert consultation on soil degradation. FAO, Rome, June 10–14, p 21

    Google Scholar 

  • Mauseth JD (1988) Plant anatomy. The Benjamin/Cummings Publishing Company, California

    Google Scholar 

  • Mimura T, Kura–Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani–Nemoto S (2003) Rapid increase of vascular volume in response to salt stress. Planta 216:397–402

    PubMed  CAS  Google Scholar 

  • Mokronosov AT, Shmakova TV (1978) Comparative analysis of the mesostructure of photosynthetic apparatus in mesophytic and xerophytic plants. In: Mezostruktura i funktsional’naya aktivnost’ fotosinteticheskogo apparata (Mesostructure and functional activity of photosynthetic apparatus), Sverdlovsk: Ural’sk. Gos. Univ., pp 103–107

    Google Scholar 

  • Munns R (2002). Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    CAS  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Nagalevskii VY (2001) Galofity Severnogo Kavkaza (Halophytes of the Northern Caucasus), Krasnodar: Kubansk. Gos. Univ.

    Google Scholar 

  • Naidoo G, Mundree SG (1993) Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth. Oecologia 93: 360–366

    Google Scholar 

  • Naidoo G, Naidoo Y (1998) Salt tolerance in Sporobolus virginicus: the importance of ion relations and salt excretion. Flora 193:337–337

    Google Scholar 

  • Naz N, Hameed M, Wahid A, Arshad M, Ahmad MSA (2009) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Plant 135:185–195

    PubMed  CAS  Google Scholar 

  • Niknam SR, Mccomb J (2000) Salt tolerance screening of selected Australian woody species–a review. Forest Ecol Manage 139:1–19

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human–induced soil degradation: An explanatory note. ISRIC–UNEP Report, Netherlands

    Google Scholar 

  • Osmond CB, Luttge U, West KR, Pallaghy CK, Shacher–Hill B (1969) Ion absorption in Atriplex leaf tissue II. Secretion of ions to epidermal bladders. Aust J Biol Sci 22:797–814

    CAS  Google Scholar 

  • Pasternak D, Nerd A, De Malach Y (1993) Irrigation with brackish water under desert conditions IX. The salt tolerance of six forage crops. Agric Water Manage 24:321–334

    Google Scholar 

  • Pitman MG (1984) Transport across the root and shoot/root interactions. In: Staples RC (ed) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 93–123

    Google Scholar 

  • Poljakoff-Mayber A (1975) Morphological and anatomical changes in plants as a response to salinity stress. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environment. Springr-Verlag, New York, pp 97–117

    Google Scholar 

  • Rabe B (1990) Stress physiology: the functional significance of the accumulation of nitrogen containing compounds, J Hort Sci 65:231–243

    CAS  Google Scholar 

  • Reinoso HLS, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot/Rev Can Bot 82(5):618–628

    Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–61

    Google Scholar 

  • Ristic Z, Jenks MA (2002) Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol 159:645–651

    CAS  Google Scholar 

  • Robinson D, Gordon DC, Powell W (1997) Mapping physiological traits in barley. New Phytol 137:149–157

    Google Scholar 

  • Rozema J, Pephagen I, Sminia T (1977) A light and electron microscopical study on the structure and function of salt gland of Glaux maritima L. New Phytol 79:665–671

    CAS  Google Scholar 

  • Samoui MA (1971) Differentiation des trichomes chez Atriplex halimus L. Comptes Rendus Sean. Acad Sci 273:1268–1271

    Google Scholar 

  • Song J, Feng G, Zhang F (2006) Salinity and temperature effect on three salt resistant euhalophytes, Halostachys capsica, Kalidium foliatum and Halocnemum strobilaceum. Plant Sci 279: 201–207

    CAS  Google Scholar 

  • Stenlid G (1956) Salt losses and redistribution of salts in higher plants. Encyc Plant Physiol 4: 615–637

    Google Scholar 

  • Storey R, Walker RR (1999) Citrus and salinity. Sci Hort 78:39–81

    CAS  Google Scholar 

  • Szabolcs I (1989) Salt affected soils. CRC Press. Boca Raton, Florida

    Google Scholar 

  • Szabolcs I (1994) Soils and salinisation. In: Pessarakali M (eds) Handbook of plant and crop stress. Marcel Dekker, New York. pp 3–11

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology. 3rd ed. Sinauer Associates Inc Publishers Massachusetts

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503–527

    PubMed  CAS  Google Scholar 

  • Thomson WW, Faraday CD, Oross JW (1988) Salt glands. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, Harlow, pp 498–537

    Google Scholar 

  • Thomson WW, Platt-Aloia K (1979) Ultrastructural transitions associated with the development of the bladder cells of the trichomes of Atriplex. Cytobios 25:105–14

    PubMed  CAS  Google Scholar 

  • Vakhrusheva DV (1989) Mesostructure of photosynthetic apparatus in C3 plants in the arid zone of Central Asia, Extended Abst. Cand. Sci. (Biol.) Dissertation, Leningrad

    Google Scholar 

  • Voronkova NM, Burkovskaya EV, Bezdeleva TA, Burundukova OL (2008) Morphological and biological features of plants related to their adaptation to coastal habitats. Russian J Ecol 39:1–7

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, New York

    Google Scholar 

  • Waisel Y (1985) The stimulating effects of NaCl on root growth of Rhodes grass (Chloris gayana). Physiol Plant 64:519–522

    Google Scholar 

  • Walsh GE (1990) Anatomy of the seed and seedling of Spartina alterniflora Lois. (Poaceae). Aquatic Bot 38(2–3):177–193

    Google Scholar 

  • Winicov I (1998) New molecular approaches to improving salt tolerance in crop plants. Ann Bot 82:703–710

    CAS  Google Scholar 

  • Wyn Jones G, Gorham J (2002) Intra– and inter-cellular compartments of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment-plant-molecules. Kluwer, Dordrecht, pp 159–180

    Google Scholar 

  • Wyn Jones RG (1981) Salt tolerance. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 271–292

    Google Scholar 

  • Zhao K, Hai F, Ungar IA (2002) Survey of halophyte species in China. Plant Sci 163:491–498

    Google Scholar 

  • Zhao Y, Yong Z, ZiZhi H, ShunGuo Y (2000) Studies on microscopic structure of Puccinellia tenuiflora stem under salinity stress. Grassland of China 5:6–9

    Google Scholar 

  • Zidan I, Azaizeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol 93:7–11

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansoor Hameed , Muhammad Ashraf , Muhammad Sajid Aqeel Ahmad or Nargis Naz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hameed, M., Ashraf, M., Ahmad, M.S.A., Naz, N. (2010). Structural and Functional Adaptations in Plants for Salinity Tolerance. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_8

Download citation

Publish with us

Policies and ethics