Skip to main content

Mechanism of Free Radical Scavenging and Role of Phytohormones in Plants Under Abiotic Stresses

  • Chapter
  • First Online:
Book cover Plant Adaptation and Phytoremediation

Abstract

Environmental stresses result in the generation of reactive oxygen species (ROS) in plants. ROS accumulate in cells and lead to the oxidation of proteins, chlorophyll, lipids, nucleic acids, carbohydrates etc. Cells have evolved intricate defense systems including enzymatic (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductases (GR), monodehydroascorbate reductases (MSHAR), dehydroascorbate reductases (DHAR), glutathione peroxidase (GPX), guaicol peroxidase (GOPX) and glutathione-S- transferase (GST) and non-enzymatic systems such as ascorbic acid (ASH), glutathione (GSH), phenolic compounds, alkaloids, non-protein amino acids and α-tocopherol, which can scavenge the indigenously generated ROS. Plant stress tolerance mediated by antioxidants has been shown by many workers. Antioxidant resistance mechanisms may provide a strategy to enhance plant stress tolerance. Various enzymes involved in ROS-scavenging have been manipulated, over-expressed or down-regulated to add to the present knowledge and understanding of the role of antioxidant system. ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid (SA), jasmonic acid, brassinosteroids, abscisic acid (ABA) etc. These Phytohormones are required for growth and development of plants and defense responses during environmental stresses. The present review throws light on the enzymatic and non-enzymatic antioxidants in plants to enhance stress tolerance in plants and also in particular the role of brassinosteroids and ethylene during abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci, (in Press)

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008a) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jhon R, Sarwat M, Umar S (2008b) Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Produc 2:353–366

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidative defense system, lipid peroxidation, proline metabolizing enzymes and Biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russian J Plant Physiol (in press)

    Google Scholar 

  • Alam MM, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide on nickel induced changes in Brassica juncea. Photosynthetica 45:139–142

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008a) A role for brassinosteroids in the amelioration of aluminum stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Fariduddin Q, Ahmad A (2008b) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arbona V, Hossain Z, Lopez-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  PubMed  CAS  Google Scholar 

  • Asada, K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PA (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in leaves and roots of wild type and catalase deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Azevedo-Neto AD, Prisco JT, Enéas-Filho J, Braga-de-Abreu CE, Gomes-Filho E (2006) Effect of salt stress on Antioxidative enzymes and lipid peroxidation in leaves and roots of salt tolerant and salt sensitive maize genotypes. Environ Exp Bot 56: 87–94

    Article  CAS  Google Scholar 

  • Ben-Amor N, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant response of the perennial halophytes Crithmum maritimum to salinity. Plant Sci 168: 889–899

    Article  CAS  Google Scholar 

  • Bergmüller, E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190

    Article  PubMed  Google Scholar 

  • Borsani O, Valupesta V, Botella M (2001) Evidence for role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley centre climate model. J Hydrometer 7:1113–1125

    Article  Google Scholar 

  • Camejo D, Martí MC, Nicolás E, Alarcón JJ, Jiménez A, Sevilla F (2007) Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus. Physiol Plant 131:367–377

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (1996) Molecular genetic studies confirms the role of brassinosteroids in plant growth and development. Plant J 10:1–8

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: Essential regulators of plant growth and development. Anu Rev Plant Physiol Plant Mol Biol 49:421–451

    Google Scholar 

  • Dalal M, Khanna-Chopra R (2001) Differential response of antioxidant enzymes in leaves of necrotic wheat hybrid and their parents. Physiol Plant 111: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Dalmia A, Sawhney V (2004) Antioxidant defense mechanism under drought stress in wheat seedlings. Physiol Mol Biol Plants 10:109–114

    CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.) Environ Exp Bot 46:95–108

    Article  CAS  Google Scholar 

  • Desel C, Hubbermann EM, Schwarz K, Krupinska K (2007) Nitration of γ-tocopherol in plant tissues. Planta 226:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Hanckok JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signalling in stomatal guard cells. Plant Physiol 137:831–834

    Article  PubMed  CAS  Google Scholar 

  • D’Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Ding ZS, Tian SP, Zheng XL, Zhou ZW, Xu Y (2007) Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol Plant 130: 112–121

    Article  CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of gluththione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    Article  CAS  Google Scholar 

  • Egert M, Tevini M (2002) Influence of drought on some physiological parameters sympatic for oxidative stress in the leaves of chives (Allium schoenoprasum) Environ Exp Bot 48:43–49

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GM, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • FAO (Food, Agriculture Organization of the United Nations) (2004) FAO production year book. FAO, Rome

    Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Lopez-Delgardo H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freeman JL, Persan MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S (1999) Natural occurrence of brassinosteroids in the plant kingdom. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer, Tokyo, Japan, pp 21–45

    Google Scholar 

  • Giacomelli L, Masi A, Ripoll DR, Lee MJ, Van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65:627–644

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: The principal heavy metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Harber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salt, Proc Royal Soc London, A Math Phys Sci 147:337–351

    Google Scholar 

  • Harinasut P, Poonsopa D, Roengmongkoi K, Charoensataporn R (2003) Salt effects on antioxidant enzymes in mulberry cultivar. ScienceAsia 29:109–113

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Poll 151:60–66

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux H, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavas-seur A, Leonhardt N (2006) Genome wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plasma membrane. Trends Plant Sci 5: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007a) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, Panneerselvam R (2007b) Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Coll Surf B: Biointerf 59:150–157

    Article  CAS  Google Scholar 

  • Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R (2008) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Coll Surf B: Biointerf 62:105–111

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water Stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Kagan VE (1989) Tocopherol stabilizes membrane against phospholipase A, free fatty acids, and lysophospholipids. In: Diplock AT, Machlin J, Packer L, Pryor W (eds) Vitamin E: Biochemistry and Health Implications. Ann New York Acad Sci 570:121–135

    Google Scholar 

  • Kamal-Eldin A, Appelqvist L (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  • Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285

    Article  PubMed  CAS  Google Scholar 

  • Keles Y, Oncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    Article  CAS  Google Scholar 

  • Kruk J, Hollander-Czytko H, Oettmeier W, Trebst A (2005) Tocopherol as singlet oxygen scavenger in photosystem II. J Plant Physiol 162:749–757

    Article  PubMed  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Li CZ, Jiao J, Wang Gen-X (2004) The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Sci 166:303–315

    Article  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both Cu-Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chory J (1999) Brassinosteroid action in plants. J Exp Biol 50:275–282

    CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  PubMed  CAS  Google Scholar 

  • Li L, van Staden J, Jäger AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul 25: 81–87

    Article  CAS  Google Scholar 

  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improves salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Coll Surf B: Biointerf 57:69–74

    Article  CAS  Google Scholar 

  • Mathur PB, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976

    Article  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    Google Scholar 

  • Meyer A, Hansen DB, Gomes CSG, Hobley TJ, Thomas ORT, Franzreb M (2005) Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey. Biotechnol Prog 21:244–254

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress. Electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  PubMed  CAS  Google Scholar 

  • Munne-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The Response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  PubMed  CAS  Google Scholar 

  • Nobuhiro S, Mittler R (2006) Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  Google Scholar 

  • Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radi Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Núñez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of a brassinsteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47: 67–70

    Article  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Pastori GP, Mullineaux, Foyer CH (2000) Post transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize. Implication on the sensitivity of maize to temperatures. Plant Physiol 122:667–675

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Pitcher LH, Zilinskas BA (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110:583–588

    PubMed  CAS  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Qiu-Fang Z, Yuan-Yuan L, Cai-Hong P, Cong-Ming L, Bao-Shan W (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Article  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: A versatile platform for launching defense operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: An update. J Plant Growth Regul 22:276–288

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1990) Response of plant antioxidant defense genes to environmental stress. Adv Genet 28:1–41

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Schlagnhaufer CD, Arteca RN, Pell EJ (1997) Sequential expression of two 1-aminocyclopropane-1-carboxylate synthase genes in response to biotic and abiotic stress in potato leaves. Plant Mol Biol 35:683–688

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to biotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1366

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Schwang P, Teichmann T, Gross K, Langenfeld-Heyer R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  CAS  Google Scholar 

  • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  PubMed  CAS  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Serbinova EA, Packer L (1994) Antioxidant properties of α-tocopherol and α-tocotrienol. Methods Enzymol 234:354–366

    Article  PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the antioxidative system. Physiol Plant 112:487–494

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Coll Surf B: Biointerf 54:143–149

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA, Sun Q, Hu ZM (2005) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Biointerfaces 43:221–227

    Article  CAS  Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedligs under water stress. Plant Grow Regul 39:137–141

    Article  CAS  Google Scholar 

  • Sirko A, Blaszczyk A, Liszewska F (2004) Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J Exp Bot 55:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Skadsen RW, Schulz-Lefert P, Herbt JM (1995) Molecular cloning, characterization and expression analysis of two classes of catalase isozyme genes in barley. Plant Mol Biol 29: 1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Srivalli B, Chinnusamy V, Khanna-Chopra R (2003) Antioxidant defense in response to abiotic stresses in plants. J Plant Biol 30:121–139

    Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Sumithra K, Jutur PP, Carmel BD, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50: 11–22

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits the abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  PubMed  CAS  Google Scholar 

  • Tausz M, Ircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    Article  CAS  Google Scholar 

  • Tuomainen J, Betz C, Kangasjärvi J, Ernst D, Yin ZH, Langebartels C, Sandermann H Jr. (1997) Ozone induction of ethylene emission in tomato plants: Regulation by differential accumulation of transcripts for the biosynthetic enzymes. Plant J 12:1151–1162

    Article  CAS  Google Scholar 

  • Turkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. actifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci 168:223–231

    Article  CAS  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Dutta BK (2008) Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant 30:457–468

    Article  CAS  Google Scholar 

  • Vahala J, Ruonala R, Keinänen M, Tuominen H, Kangasjärvi J (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol 132:185–195

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Van Heerden, PDR, Kruger GHJ (2002) Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J Plant Physiol 159:1077–1086

    Article  Google Scholar 

  • Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31

    Article  CAS  Google Scholar 

  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60–68

    Article  CAS  Google Scholar 

  • Vogelli-Lange R, Wagner GJ (1990) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci 114:701–710

    Google Scholar 

  • Wang K, Li H, Ecker J (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(suppl):S131–S151

    PubMed  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162: 465–472

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Feng H, Qu Y, Cheng J, Zhao Z, Zhang M, Wang X, An L (2006) The relationships between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61

    Article  CAS  Google Scholar 

  • Wu G, Wei ZK, Shao HB (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Coll Surf B: Biointerf 59:113–119

    Article  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z and Yu ZQ (2009) Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber. Plant Physiol 150:801–814

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological function of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126: 564–574

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Han C, Liu Q, Lin B, Wang J (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    Article  CAS  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yang J, Lu S, Cai J, Guo Z (2008) Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul 27:151–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parvaiz Ahmad , Shahid Umar or Satyawati Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahmad, P., Umar, S., Sharma, S. (2010). Mechanism of Free Radical Scavenging and Role of Phytohormones in Plants Under Abiotic Stresses. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_5

Download citation

Publish with us

Policies and ethics