Skip to main content

Phytoremediation of Toxic Explosives

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Widespread contamination of the environment by explosives resulting from the manufacture, disposal and testing of munitions is becoming a matter of increasing concern. Most explosives are considered to be a major hazard to biological systems due to their toxic and mutagenic effects. Interest on the bioremediation of lands contaminated with explosives has recently been focused on phytoremediation. Unfortunately, whilst plants have many advantages for the remediation of contaminated land and water, they lack the catabolic versatility which enables microorganisms to mineralize such a wide diversity of xenobiotic compounds. This raised the interesting question as to whether the impressive biodegradative capabilities of soil bacteria could be combined with the high biomass and stability of plants to yield an optimal system for in situ bioremediation of explosive residues in soil. During the last few years, plants have been genetically modified to overcome the inherent limitation of plant detoxification capabilities, following a strategy similar to the development of transgenic crops. Bacterial genes encoding enzymes involved in the breakdown of explosives have been introduced in higher plants, resulting in significant enhancement of plant tolerance, uptake and detoxification performances. Transgenic plants exhibiting biodegradation capabilities of microorganisms bring the promise of an efficient and environmental-friendly technology for cleaning up polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTDR (2004) http://www.atsdr.cdc.gov/toxprofiles/

  • Best EPH, Geter KN, Tatem HE, Lane BK (2006) Effects, transfer, and fate of RDX from aged soil in plants and worms. Chemosphere 62:616–625

    Article  PubMed  CAS  Google Scholar 

  • Best EPH, Kvesitadze G, Khatisashvili G, Sadunishvili T (2005) Plant processes important for the transformation and degradation of explosives contaminants. Z Naturforsch C J Biosci 60: 340–348

    CAS  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072

    Article  PubMed  CAS  Google Scholar 

  • Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999b) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33:446–452

    Article  CAS  Google Scholar 

  • Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44: 1259–1264

    Article  PubMed  CAS  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999a) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361

    Article  CAS  Google Scholar 

  • Binks PR, French CE, Nicklin S, Bruce NC (1996) Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 62:1214–1219

    PubMed  CAS  Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss H (eds) Biodegradation of nitroaromatic compounds and explosives. CRC, Boca Raton, pp 239–276

    Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39: 377–9390

    Article  Google Scholar 

  • Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Cunningham SD, Berti WR, Huang JWW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dietz A, Schnoor JL (2001) Advances in phytoremediation. Environ Health Persp 109:163–168

    CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Nat Acad Sci U S A 104:16816–16821

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Eapen S, Singh S, D'Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25: 442–451

    Article  PubMed  CAS  Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Ekman DR, Wolfe NL, Dean JFD (2005) Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Sci Technol 39:6313–6320

    Article  PubMed  CAS  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nature Biotechnol 17: 491–494

    Article  CAS  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868

    PubMed  CAS  Google Scholar 

  • Han KH, Meilan R, Ma C, Strauss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep 19:315–320

    Article  CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnol 19:1168–1172

    Article  CAS  Google Scholar 

  • Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21:511–538

    Article  CAS  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JAH, Shanks JV, Bruce NC (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytorem 9:385–401

    Article  CAS  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1990) Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant-tissues by high-performance liquid-chromatography. J Chromatogr 518:361–374

    Article  CAS  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991) Fate of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10:845–855

    Article  CAS  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  PubMed  CAS  Google Scholar 

  • Hooker BS, Skeen RS (1999) Transgenic phytoremediation blasts onto the scene. Nature Biotechnol 17:428

    Article  CAS  Google Scholar 

  • Hughes JB, Shanks JV, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    Article  CAS  Google Scholar 

  • Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–469

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Li ZS, Lu YP, Rea PA (1997) The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Biosci Rep 17:189–207

    Article  PubMed  CAS  Google Scholar 

  • Jube S, Borthakur D (2007) Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects. Electronic J Biotechnol 10:452–467

    CAS  Google Scholar 

  • Just CL, Schnoor JL (2004) Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary grass. Environ Sci Technol 38:290–295

    Article  PubMed  CAS  Google Scholar 

  • Larson SL, Jones RP, Escalon L, Parker D (1999) Classification of explosives transformation products in plant tissue. Environ Toxicol Chem 18:1270–1276

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, New Jersey

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH and Freeman JL (2006) Environmental cleanup using plants: Biotechnological advances and ecological considerations. Fron Ecol Environ 4:203–210

    Article  Google Scholar 

  • Rao ML, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, Saxton JS, Stewart Jr CN (2009) Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: Identification of required target genes. Funct Integr Genomics DOI 10.1007/s10142- 009-0125-z.

    Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt DH (1980) Toxicology of explosives and propellants. In: Kaye, S.M., (Ed.) Encyclopedia of explosives and related items, vol 9. US Army Armament Research Development Committee, Dover, pp 332–345

    Google Scholar 

  • Rosser SJ, French CE, Bruce NC (2001) Engineering plants for the phytoremediation of explosives. InVitro Cell Develop Biol Plant 37:330–333

    Article  CAS  Google Scholar 

  • Rugh CL (2004) Genetically engineered phytoremediation: One man’s trash is another man’s transgene. Trends Biotechnol 22:496–498

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: Engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nature Biotechnol 24:216–219

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  PubMed  CAS  Google Scholar 

  • Schaffner A, Messner B, Langebartels C, Sandermann H (2002) Genes and enzymes for in-planta phytoremediation of air, water and soil. Acta Biotechnol 22:141–151

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of contaminated soils and sediments. Environ Sci Technol 29:318–323

    Google Scholar 

  • Schnoor JL, Van Aken B, Brentner LB, Tanaka S, Flokstra B, Yoon JM (2006) Identification of metabolic routes and catabolic enzymes involved in phytoremediation of the nitro-substituted explosives TNT, RDX, and HMX. SERDP Final Technical Report 02 CU13–17

    Google Scholar 

  • Schoenmuth BW, Pestemer W (2004) Dendroremediation of trinitrotoluene (TNT). Part 2: Fate of radio-labelled TNT in trees. Environ Sci Pollution Res 11:331–339

    Article  CAS  Google Scholar 

  • Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann New York Acad Sci 721:481–491

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  PubMed  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Schnoor JL (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284

    Article  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Schnoor JL (1998) Uptake and transformation of TNT by hybrid poplar trees. Environ Sci Technol 32:975–980

    Article  CAS  Google Scholar 

  • Travis ER, Hannink NK, Van der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861

    Article  PubMed  CAS  Google Scholar 

  • Van AB (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol doi:10.1016/j.copbio. 2009.01.011

    Google Scholar 

  • Van AB, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34). Environ Sci Technol 38:4572–4579

    Article  Google Scholar 

  • Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41: 1378–1383

    Article  PubMed  Google Scholar 

  • Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Article  PubMed  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Poll 148:148–154

    Article  CAS  Google Scholar 

  • Wayment DG, Bhadra R, Lauritzen J, Hughes JB, Shanks JV (1999) A transient study of formation of conjugates during TNT metabolism by plant tissues. Int J Phytorem 1:227–239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nand Lal or Neerja Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lal, N., Srivastava, N. (2010). Phytoremediation of Toxic Explosives. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_17

Download citation

Publish with us

Policies and ethics