Skip to main content

Toxins and Their Phytoremediation

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

The agricultural and industrial revolutions in the last few decades have resulted in increased concentration of toxins in our environment that are now-a-days a major cause of toxicity in plants and animals. Among different toxins, increasing levels of salts, heavy metal, pesticides and other chemicals are posing a threat to agricultural as well as natural ecosystems of the world. These contaminants result in soil, air and water pollution, and loss of arable lands as well as crop productivity. They also cause changes in species composition and loss of biodiversity by bringing about changes in the structure of natural communities and ecosystems. In this situation, different approaches are being adopted to reclaim polluted environments. Among these, phytoremediation has a potential in removing these toxins from the environment. This approach is based on the use of natural hyperaccumulator plant species that can tolerate relatively high levels of pollutants in the environment. Pollutants accumulated in stems and leaves of high biomass producing and tolerant plants can be harvested and removed from the site. Therefore, this approach has a potential to remove large amounts of toxins by harvesting the above-ground biomass. However, the effectiveness of phytoremediation approach can be increased if we have better knowledge of physiological, biochemical, molecular and genetic bases of plant resistance to natural and anthropogenic induced toxins. All these aspects of toxicity mechanisms and their removal techniques are comprehensively reviewed in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-Kassim TAT, Simoneit BRT (2001) Organic pollutants in aqueous-solid phase environments: types, analyses and characterizations. In: Aboul-Kassim TAT, Simoneit BRT (eds) The handbook of environmental chemistry. Pollutant-solid phase interactions mechanisms, chemistry and modeling, vol. 5E, Springer, Berlin

    Google Scholar 

  • Ahmad MSA, Hussain M, Saddiq R, Alvi AK (2007) Mungbean: a nickel indicator, accumulator or excluder? Bull Environ Contam Toxicol 78:319–324

    Article  PubMed  CAS  Google Scholar 

  • Aken BV (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opinion Biotechnol 20:231–236

    Article  CAS  Google Scholar 

  • Albering HJ, van Leusen SM, Moonen EJC, Hoogewerff JA, Kleinjans JCS (1999) Human health risk assessment: a case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993–1994. Environ Health Persp 107(1):37–44

    Article  Google Scholar 

  • Ali AJ, Xu JL, Ismail AM, Fu BY, Vijaykumar CHM, Gao YM, Domingo J, Maghirang R, Yu SB, Gregorio G (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res 97:66–76

    Article  Google Scholar 

  • Allison N, Turner JE, Wait R (1995) Degradation of homovanillate by a strain of Variovorax paradoxus via ring hydroxylation. FEMS Microbiol Lett 134:213–219

    Article  PubMed  CAS  Google Scholar 

  • Alloway BJ (ed) (2008) Micronutrient deficiencies in global crop production. Springer Science Publisher, Berlin

    Google Scholar 

  • Andreu V, Pico, Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trends Anal Chem 23:10–11

    Article  CAS  Google Scholar 

  • Antosiewicz DM (1992) Adaptation of plants to an environment polluted with heavy metals. Byul Izobr 61:281–299

    CAS  Google Scholar 

  • Arthur EL, Coats JR (1998) Phytoremediation. In: Kearney PC, Roberts T (eds) Pesticide Remediation in Soil and Water, Wiley, New York

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63(1–3):266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Bacci E (1994) Ecotoxicology of organic contaminants. CRC Press/Lewis Publishers Inc., Boca Raton

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Balaguer J, Almendo MB, Gomez I, Navarro-Pedreno J, Mataix J (1998) Tomato growth and yield affected by nickel presented in the nutrient solution. Acta Hort 269–272

    Google Scholar 

  • Ballhorn DJ, Heil M, Pietrowski A, Lieberei R (2007) Quantitative effects of cyanogenesis on an adapted herbivore. J Chem Ecol 33(12):2195–2208

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn DJ, Heil SKM, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defense in nature. PLoS One. 4(5):e5450

    Article  PubMed  CAS  Google Scholar 

  • Barillo DJ (2009) Diagnosis and treatment of cyanide toxicity. J Burn Care Res 30(1):148–152

    Article  PubMed  Google Scholar 

  • Barley RW, Hutton C, Brown MME, Cusworth JE, Hamilton TJ (2005) Trends in biomass and metal sequestration associated with reeds and algae at Wheal Jane Biorem pilot passive treatment plant. Sci Total Environ 345(1–3):279–286

    Article  PubMed  CAS  Google Scholar 

  • Barnes I, Rudzinski KJ (2006) Investigation of real car exhaust in environmental simulation chambers: results from the INFORMATEX and DIFUSO Projects, Environmental Simulation Chambers: Appl Atmos Chem Processes 62:1568–1238

    Google Scholar 

  • Barron MG (2002) Bioaccumulation and bioconcentration in aquatic organisms. In: Hoffman DJ, Rattner BA, Burton GA Jr. (eds) Handbook of ecotoxicology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Battarbee RW, Anderson NJ, Appleby PG, Flower RJ, Fritz SC, Haworth EY, Higgitt S, Jones VJ, Kreiser A, Munro MAR, Natkanski J, Oldfield F, Patrick ST, Richardson NG, Rippey B, Stevenson AC (1988) Lake acidification in the United Kingdom 1800–1986. ENSIS Publishing, London

    Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072

    Article  PubMed  CAS  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361

    Article  CAS  Google Scholar 

  • Biró I, Takács T (2007) Study of heavy metal uptake of Populus nigra in relation to phytoremediation. Cereal Res Commun 35(2):265–268

    Article  CAS  Google Scholar 

  • Bizily S, Rugh C, Meagher R (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  PubMed  CAS  Google Scholar 

  • Bizily S, Rugh C, Summers A, Meagher R (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci 96:6808–6813

    Article  PubMed  CAS  Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Prespect 103(12): 1106–1108

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Boesten JJTI (2000) From laboratory to field: uses and limitations of pesticide behaviour models for the soil/plant system. Weed Res 40:123–138

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance. The next step. Aust J Plant Physiol 23:661–667

    Article  Google Scholar 

  • Boullata JI, Armenti VT (eds) (2004) Handbook of drug-nutrient interactions. Humana Press, Totowa

    Google Scholar 

  • Brooks RR (1994) Plants and chemical elements: biochemistry, uptake, tolerance and toxicity. VCH Verlagsgesellsschaft, Germany, pp 88–105

    Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT [1,1 1-Trichloro-2,2-Bis(4-Chlorophenyl) Ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2000–2008

    Google Scholar 

  • Burken JG, Schnoor JL (1996) Phytoremediation: plant uptake of atrazine and role of root exudates. J Environ Engineer 122:958–963

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss H (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 239–276

    Google Scholar 

  • Calderbank A (1989) The occurrence and significance of bound pesticide residues in soil. Environ Contam Toxicol 108:71–103

    Article  CAS  Google Scholar 

  • Cataldo DA, Wildung RE (1978) Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health Persp 27:149–159

    Article  CAS  Google Scholar 

  • Chaney LR, Ryan JA (1994) Risk based standards for arsenic, lead and cadmium in urban soils. DECHEMA, Frankfurt

    Google Scholar 

  • Chaney R, Li Y, Angle S, Baker A, Reeves R, Brown S, Homer F, Malik M, Chin M (2000) Improving metal hyperaccumulator wild plants to develop phytoextraction systems: approaches and progress, In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 129–158

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals, Curr Opinion Biotechnol 8(3):279–284

    Article  CAS  Google Scholar 

  • Chaudhry Q, Schröder P, Werck-Reichhart D, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res Int 9(1):4–17

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD (2002) Environmental factors that control microbial perchlorate removal. Appl Environ Microbiol 68:4425–4430

    Article  PubMed  CAS  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:377–9390

    Article  CAS  Google Scholar 

  • Chhabra R (1996) Soil salinity and water quality. In: Abrol IP, Yadav JSP, Massoud FI (eds) Origin and distribution of salt affected soils. Taylor & Francis, Boca Raton

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Coats JR, Anderson TA (1997) The use of vegetation to enhance bioremediation of surface soils contaminated with pesticide wastes. US EPA. Office of Research and Development. Washington

    Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomemb 40(5):533–539

    Article  CAS  Google Scholar 

  • Cummings SP (2009) Bioremediation: methods and Protocols (Methods in Molecular Biology Vol 599). Humana Press, Totowa, NJ

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwat P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Curry SC, LoVecchio FA (2001) Hydrogen cyanide and inorganic cyanide salts. In: Sullivan JB, Krieger GR (eds) Clinical environmental health and toxic exposures. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Datta KK, de Jong C (2002) Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agric Water Manag 57(3):223–238

    Article  Google Scholar 

  • Delibacak S, Elmaci OL, Secer M, Bodur A (2002) Fertility status, trace elements and heavy metal pollution of agricultural land irrigated from the Gediz River. Int J Water 2(2/3):184–195

    Article  Google Scholar 

  • Deoraj C. (2003) Case studies of the impact of understanding bioavailability: Arsenic. Ecotoxicol Environ Safety 56(1):164–173

    Article  CAS  Google Scholar 

  • Deoraj C, Gochfeld M, Gurzau E, Neagu C, Ruedel H (2003) Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicol Environ Safety 56(1):45–51

    Article  CAS  Google Scholar 

  • Dietz A, Schnoor JL (2001) Advances in phytoremediation. Environ Health Persp 109:163–168

    CAS  Google Scholar 

  • Dixon M, Webb EC (1958) Enzymes. Academic Press, New York

    Google Scholar 

  • Dubey SK, Holmes DS (1995) Biological cyanide destruction mediated by microorganisms. World J Microbiol Biotechnol 11(3):257–265

    Article  CAS  Google Scholar 

  • Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, Hicks BB, Miller JM, Prospero JM, Arimoto R, Church TM, Ellis W, Galloway JN, Hansen L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Tsunogai S, Wollast R, Zhou M (1991) The atmospheric input of trace species to the ocean. Global Biogeochemical Cycles 5:193–259

    Article  CAS  Google Scholar 

  • Dunin FX (2002) Integrating agroforestry and perennial pastures to mitigate water logging and secondary salinity. Agric Water Manag 53(1–3):259–270

    Article  Google Scholar 

  • Dzombak DA, Ghosh RS, Wong-Chong GM (2006) Cyanide in water and soil: chemistry, Risk, and Management, CRC Press, Boca Raton

    Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91(2):127–133

    Article  PubMed  CAS  Google Scholar 

  • Ebbs S, Bushey J, Poston S, Kosma D, Samiotakis M, Dzombak D (2003) Transport and metabolism of free cyanide and iron cyanide complexes by willow. Plant Cell Environ 26:1467–1478

    Article  CAS  Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Ellenhorn MJ, Schonwald S, Ordog G, Wasserberger J (1997) Ellenhorn’s medical toxicology: diagnosis and treatment of human poisoning. Williams and Wilkins, Maryland, pp 1614–1663

    Google Scholar 

  • Emmanuel OA, Emmanuel NU (1981) Characterization of rhodanese from cassava leaves and tubers. J Exp Bot 32(5):1021–1027

    Article  Google Scholar 

  • Ewais EA (1997) Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biol Plant 39(3):403–410

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(96):307–319

    Article  PubMed  CAS  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868

    PubMed  CAS  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nature Biotechnol 17: 491–494

    Article  CAS  Google Scholar 

  • Gajewska E, SkÅ‚odowska M, SÅ‚aba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50(4):653–659

    Article  CAS  Google Scholar 

  • Galloway JN, Thornton JD, Norton SA, Volchok HL, McClean HL (1982) Trace metals in atmospheric deposition: a review and assessment. Atmo Environ 16:1677–1700

    Article  CAS  Google Scholar 

  • Galoian SM, Tolosa EA, Goriachenkova EV (1982) Role of β-cyanoalanine hydrtase in the synthesis of asparagine in white lupine. Biokhimiia 47:1949–1953

    PubMed  CAS  Google Scholar 

  • Gao J-P, Chao D-Y, Lin H-X (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integ Plant Biol 49(6):742–750

    Article  CAS  Google Scholar 

  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33:502–511

    Article  PubMed  CAS  Google Scholar 

  • Gebrehiwot L, Beuselinck PR (2001) Seasonal variations in hydrogen cyanide concentration of three lotus species. Agron J 93:603–608

    Article  CAS  Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Poll 108:3–14

    Article  CAS  Google Scholar 

  • Ghafoor A, Rauf A, Arif M (1996) Soil and plant health irrigated with Paharang drain sewage effluents at Faisalabad. Pak J Agri Sci 33:73–76

    Google Scholar 

  • Ghani A, Wahid A (2007) Varietal differences for cadmium-induced seedling mortality and foliar-toxicity symptoms in mungbean (Vigna radiata). Int J Agri Biol 09(4):555–558

    CAS  Google Scholar 

  • Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol 28(7):1301–1313

    Article  PubMed  CAS  Google Scholar 

  • Goel A, Aggarwal P (2007) Pesticide poisoning. Natl Med J India 20(4):182–191

    PubMed  Google Scholar 

  • Graham RD, Stangoulis JCR (2003) Trace element uptake and distribution in plants. J Nutr 133:1502S–1505S

    PubMed  CAS  Google Scholar 

  • Gramatica P, Pozzi S, Consonni V, Di Guardo A (2002) Classification of environmental pollutants for global mobility potential. SAR QSAR Environ Res 13(2):205–217

    Article  PubMed  CAS  Google Scholar 

  • Grcman H, Vodnik D, Velikonja-Bolta S, Lestan D (2003) Ethylenediaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 312:149–190

    Article  Google Scholar 

  • Grieve CM, Suarez Dl (1997) Purslane (Portulaca oleracea L.): a halophytic crop for drainage water reuse systems. Plant Soil 192:277–283

    Article  CAS  Google Scholar 

  • Gruhnert CH, Biel B, Selmar D (1994) Compartmentalization of cyanogenic glucosides and their degrading enzymes. Planta 195:36–42

    Article  CAS  Google Scholar 

  • Grusak MA (2002) Enhancing mineral content in plant food products. J Amer Coll Nutr 21: 178S–183

    Google Scholar 

  • Grusak MA, Marentes E, Pearson JN (1999) The physiology of micronutrient homeostasis in field crops. Field Crops Res 60:41–56

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall JC, Hoagland RE, Zablotowicz RM (eds) (2000) Pesticide biotransformation in plants and microorganisms. ACS Symposium Series, No. 777, Oxford University Press, New York

    Google Scholar 

  • Hamdy A, Abdul-Dayem S, Abu-Zeid M (1993) Saline water management for optimum crop production. Agric Water Management Institute Agronomic Mediterraneo Valenzano, Bari, Italy, 24:189–203

    Article  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991) Fate of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10:845–855

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  PubMed  CAS  Google Scholar 

  • Hendersona KLD, Beldenb JB, Zhaoc S, Coatsa JR (2006) Phytoremediation of pesticide wastes in soil. Z Naturforsch (61):213–221

    Google Scholar 

  • Hoagland RE, Zablotowicz RM (1995) Rhizobacteria with exceptionally high aryl acylamidase activity. Pestic Biochem Physiol 52:190–200

    Article  CAS  Google Scholar 

  • Hu H (2002) Human health and heavy metals exposure. In: McCally M (ed) Life Support: the environment and human health, MIT Press, Cambridge

    Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41(24):8439–8446

    Article  PubMed  CAS  Google Scholar 

  • Hutton M, Symon C (1986) The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities. Sci Total Environ 57:129–150

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Takabe T, Akazawa T (1986) Effect of betaine on enzyme activity and subunit interaction of ribulose-5,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol 81:1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Ingersoll CG, Haverland PS, Brunson EL, Canfield TJ, Dwyer FJ, Henke CE, Kemble NE, Mount DR, Fox RG (1996) Calculation and evaluation of sediment effect concentrations for the amphiod Hyalella azteca and the midge Chironomus riparius. J Great Lakes Res 22: 602–623

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Islam E, Yang X, He Z, Qaisar M (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. British Med Bull 68:167–182

    Article  Google Scholar 

  • Jenkins TF, Hewitt AD, Grant CL, Guy Ampleman ST, Walsh ME, Ranney TA, Ramsey CA, Palazzo AJ, Pennington (2006) Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere 63(8):1280–1290

    Article  PubMed  CAS  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Quart 43(3):139–44

    CAS  Google Scholar 

  • Just CL, Schnoor JL (2004) Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary grass. Environ Sci Technol 38:290–295

    Article  PubMed  CAS  Google Scholar 

  • Kale SP, Nurthy NBK, Raghu K (2001) Degradation of 14C-carbofuran in soil using a continuous flow system. Chemosphere 44:893–895

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh M (2004) Cyanide formation and fate in complex effluents and its relation to water quality criteria. IWA Publishing Company, London

    Google Scholar 

  • Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • Kazuya Y, Taro U, Tomonori M, Noriyuki S (1999) Constituents of organic pollutants in leachates from different types of landfill sites and their fate in the treatment processes. J Japan Soc Water Environ 22(1):40–45

    Article  Google Scholar 

  • Khan SU (1982) Bound pesticide residues in soil and plants. Residue Rev 84:1–25

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen P (1998) Behavior of cyanides in soil and groundwater: a review. Water Air Soil Poll 115:279–307

    Article  Google Scholar 

  • Koptsik S, Koptsik G, Livantsova S, Eruslankina L, Zhmelkova T, Vologdina ZH (2003) Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity. J Environ Monit 5:441–450

    Article  PubMed  CAS  Google Scholar 

  • Korte F, Spiteller M, Coulston F (2000) The cyanide leaching gold recovery process is a non-sustainable technology with unacceptable impacts on ecosystems and humans: the disaster in Romania. Ecotox Environ Safety 46:241–245

    Article  CAS  Google Scholar 

  • Kos B, Lestan D (2003) Influence of a biodegradable ([S,S]- EDDS) and non-degradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253:403–411

    Article  CAS  Google Scholar 

  • Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705

    Article  CAS  Google Scholar 

  • Kumar D (1995) Salt tolerance in oilseed brassicas-present status and future prospects. Plant Breed Abst 65:1438–1447

    Google Scholar 

  • Langford N, Ferner R (1999) Toxicity of Mercury. J Hum Hypertens 13:651–656

    Article  PubMed  CAS  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54(3):325–333

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–5

    Google Scholar 

  • Laws ER, Hayes WJ (1991) Handbook of pesticide toxicology. Academic Press, San Diego

    Google Scholar 

  • Lee M, Yang M (2009) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Materials 173(1):589–596

    Google Scholar 

  • Liao M, Xie X (2008) Effects of combination of plant and microorganism on degradation of simazine in soil. J Environ Sci 20(2):195–198

    Article  CAS  Google Scholar 

  • Lindberg S, Greger M (2002) Plant genotypic differences under metal deficient and enriched conditions. In: Prasad MNV, Kazimierz S (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht pp 357–393

    Chapter  Google Scholar 

  • Loska K, Wilechula D, Cebula J (2000) Changes in the forms of metal occurrence in bottom sediment under condition of artificial hypolimnetic aeration of Rybink Reservoir, Southern Poland. Polish J Environ Stud 9:523–530

    CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2004) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59(1):1–11

    Article  CAS  Google Scholar 

  • Lupino GP, Vara PMN, Felippe CP, John LP, AntunesAR (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64

    Google Scholar 

  • Lynch JC, Brannon JM, Delfino JJ (2002) Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Chemosphere, 47(7):725–734

    Article  PubMed  CAS  Google Scholar 

  • MacDonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  CAS  Google Scholar 

  • Madhava Rao KV, Sresty TV (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  PubMed  CAS  Google Scholar 

  • Mandava NB, Morgan ED, Ignoffo CM (1985) CRC handbook of natural pesticides: methods. In: Mandava NB, Morgan ED (eds) CRC Series in Naturally Occurring Pesticides. vol. 3, Part 2. CRC Press, Boca Raton

    Google Scholar 

  • Manning K (1988) Detoxification of cyanide by plants and hormone action. In: Ciba Foundation (eds) Cyanide compounds in biology. Wiley, Chichester, pp 92–110

    Google Scholar 

  • Marchand A-L, Piutti S, Lagacherie B, Soulas G (2002) Atrazine mineralization in bulk soil and maize rhizosphere. Biol Fert Soils 35:288–292

    Article  CAS  Google Scholar 

  • Marer PJ (ed) (2000) The safe and effective use of pesticides. Pesticide Application Compendium 1, vol. 3324, ANR Publications, Oakland

    Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher plants, 2nd edn. Academic Press. London

    Google Scholar 

  • Maruyama A, Saito K, Ishizawa K (2001) β-cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 46:749–760

    Article  PubMed  CAS  Google Scholar 

  • McIntyre T, Lewis GM (1997) The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites in Canada: a discussion paper. J Soil Contam 6(3):227–241

    Article  CAS  Google Scholar 

  • Mckell CM (1994) Salinity tolerance in Atriplex species: fodder shrubs for arid lands. In: Pessarakly M (ed) Handbook of Plant and Crop Stress. Dekker, New York, pp 497–504

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opinion Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274(1):163–174

    Article  CAS  Google Scholar 

  • Memon AR, Aktoprakligel D, Ozdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanism in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Mezzari MP, Walters K, Jelínkova M, Shih M-C, Just CL, Schnoor JL (2005) Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 138:858–869

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiol 65:1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Misra SG, Mani D (1991) Soil Pollution. Ashish Publishing House, New Dehli

    Google Scholar 

  • Morgan ED, Mandava NB (1988) CRC Handbook of natural pesticides, Part 1, CRC Press, Boca Raton

    Google Scholar 

  • Mudder T, Botz M (2001) A guide to cyanide. Mining Environ Manag 9:8–12

    Google Scholar 

  • Mueller B, Rock S, Gowswami Dib, Ensley D (1999) Phytoremediation decision tree. Prepared by – Interstate Technology and Regulatory Cooperation Work Group, pp 1–36

    Google Scholar 

  • Mueller-Roeber B, Dreyer I (2007) Ion homeostasis: plants feel better with proper control. EMBO Rep 8(8):735–736

    Article  PubMed  CAS  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant-growth in saline soils -some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygenevolving complex. FEBS Lett 296(2):187–189

    Article  PubMed  CAS  Google Scholar 

  • Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exp Bot 49:251–257

    Article  CAS  Google Scholar 

  • Nair DR, Burken JG, Licht LA, Schnoor JL (1993) Mineralization and uptake of triazine pesticide in soil-plant systems. J Environ Engineer 119:842–854

    Article  CAS  Google Scholar 

  • Navarro S, Vela N, Gimenez MJ, Navarro G (2004) Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions. Sci Total Environ 329:87–97

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Hibino T, Takabe T, Sugyama T, Yokota A, Miyake H, Takabe T (1998) Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol 39:425–432

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JF (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Hernandez ML, Sanchez-Salinas E, Gutierrez-Ruiz M (1999) Effects of the addition of residual loads on an agricultural soil and maize cultivation. Revista Internacional de Contaminación Ambiental 15:69–77

    CAS  Google Scholar 

  • Osano AA, Siboe GM, Ochanda JO, Kokaro JO (1999) Biodegradation of DDT: the role of Pleurotus sp., A lingnicolous fungus. In: Alleman BC, Leeson A (eds) Bioremediation of nitroaromatic and haloaromatic compounds. Battelle Press, Columbus

    Google Scholar 

  • Pandey N, CP Sharma (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252

    Article  CAS  Google Scholar 

  • Park JY (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Nat Acad Sci U S A 104:16816–16821

    Article  Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Veterinarni Medicina 52(1):1–18

    CAS  Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives, Thermochimica Acta 384(1–2):163–172

    Article  CAS  Google Scholar 

  • Peterson MM, Horst GL, Shea PJ, Comfort SD, Peterson RKD (1996) TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of tall fescue. Environ Poll 93(1):57–62

    Article  CAS  Google Scholar 

  • Philp RB (1995) Environmental Hazards and Human Health. CRC Press, Boca Raton

    Google Scholar 

  • Podlipna R, Fialova Z, Vanek T (2008) Toxic effect of nitroesters on plant tissue cultures. Plant Cell Tiss Organ Cult 94:305–311

    Article  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in Plants. Plant Physiol 94:401–405

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV (2004a) Heavy metal stress in plants: from molecules to ecosystems. 2nd edn. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Prasad MNV (2004b) Phytoremediation of metals in the environment for sustainable development. Proceedings of the Indian National Science Academy 70:71–98

    CAS  Google Scholar 

  • Prasad MNV (2007) Sunflower (Helinathus annuus L.). A potential crop for environmental industry. Helia 30: 167–174

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29(4):529–540

    Article  PubMed  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. In: Transgenic Microalgae as green cell factories. Springer, New York, pp 99–109

    Book  Google Scholar 

  • Rao ML, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, Saxton JS, Stewart Jr CN (2009) Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: Identification of required target genes. Funct Integr Genomics DOI 10.1007/s10142-009-0125-z

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation environment. Wiley, New York, p 35,. ISBN-47-119254-6

    Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Richards RJ, Applegate RJ, Ritchie AIM (1997) The rum jungle rehabilitation project. In: Environmental management in the Australian minerals and energy industries principles and practices. UNSW Press, South Wales

    Google Scholar 

  • Roberts SJ, Walker A, Parekh NR, Welch SJ, Waddington MJ (1993) Studies on a mixed bacterial culture from soil which degrades the herbicide linuron. Pestic Sci 39:71–78

    Article  CAS  Google Scholar 

  • Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (1996) Phytotoxicity of 2,4,6-Trinitrotoluene (TNT) and Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX) in Spiked Artificial and Natural Forest. Soils Arch Environ Contam Toxicol 44(2):198–209

    Article  CAS  Google Scholar 

  • Rosenblatt DH (1980) Toxicology of explosives and propellants. In: Kaye SM (ed) Encyclopedia of Explosives and Related Items. vol. 9. Dover, New Jersey: US Army Armament Research Development Committee, pp 332–345

    Google Scholar 

  • Rugh CL (2004) Phytoremediation. Encyclopedia of plant and crop science. Taylor & Francis, New York, pp 1–4

    Google Scholar 

  • Rugh C, Dayton Wilde H, Stack N, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci 93:3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Rugh C, Senecoff J, Meagher R, Merkle S (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnol 16:925–928

    Article  CAS  Google Scholar 

  • Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(2)73–81

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky MJ (1999) Phytoremediation: past promises and future practices. In: Proceedings of the 8th international symposium on microbiological ecology halifax, Canada, pp 1–7

    Google Scholar 

  • Safferman SI, Lamar RT, Vonderhaar S, Neogy R, Haught RC, Krishnan ER (1995) Treatability study using Phanerochaete sordida for the bioremediation of DDT contaminated soil. Toxicol Environ Chem 50:237–251

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD and Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian Mustard. Environ Sci Technol 31(6):1636–1644

    Article  CAS  Google Scholar 

  • Sánchez-Pérez R, Jørgensen K, Olsen CE, Dicenta F, Møller BL (2008) Bitterness in almonds. Plant Physiol 146(3):1040–1052

    Article  PubMed  CAS  Google Scholar 

  • Santamour FS Jr. (1998) Amygdalin in Prunus leaves. Phytochemistry 47(8):1537–1538

    Article  CAS  Google Scholar 

  • Sassman SA, Lee LS, Bischoff M, Turco RF (2004) Assessing N,Nʹ-dibutylurea (DBU) formation in soils after application of n-butylisocyante and benlate fungicides, J Agric Food Chem 52:747–754

    Article  PubMed  CAS  Google Scholar 

  • Scancar J, Milacic R, Strazar M, Burica O (2000) Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci Total Environ 250:9–19

    Article  PubMed  CAS  Google Scholar 

  • Schluz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33(2):419–48

    Article  Google Scholar 

  • Schnepp R (2006) Cyanide: sources, perceptions, and risks, J Emergy Nurs 32(4):S3–S7

    Article  Google Scholar 

  • Schoenmuth BW, Pestemer W (2004) Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees. Environ Sci Pollution Res 11:331–339

    Article  CAS  Google Scholar 

  • Schwitzguebel J (2000) Potential of Phytoremediation, an emerging green technology. Ecosyst Service Sustain Watershed Manag Sci B 9(3):210–220

    Google Scholar 

  • Seiler HG, Sigel A, Sigel H (1994) Handbook on Metals in Clinical and Analytical Chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon penellii. Physiol Plant 104:169–174

    Article  CAS  Google Scholar 

  • Sharma PD (2005) Environmental biology and toxicology. Rastogi Publications, Meerut

    Google Scholar 

  • Shreiver CA, Liess M (2007) Mapping ecological risk of agricultural pesticide runoff. Sci Total Environ 384:264–279

    Article  CAS  Google Scholar 

  • Sigel A, Sigel H, Sigel RKO (2005) Biogeochemistry, availability, and transport of metals in the environment. Informa Health Care Publishers, London

    Google Scholar 

  • Sparks R (2003) Environmental soil chemistry, Elsevier, Amsterdam

    Google Scholar 

  • Srivastava DS, Jefferies RL (1996) A positive feedback: herbivory, plant growth, salinity, and the desertification of an arctic salt-marsh. J Ecol 84(1):31–42

    Article  Google Scholar 

  • Steppuhn H, Volkmar KM, Miller PR (2001) Comparing canola, field pea, dry bean, and durum wheat crops grown in saline media. Crop Sci 41(6):1827–1833

    Article  Google Scholar 

  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycinebetaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J Plant Physiol 158: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Suciu I, Cosma C, Todică M, Bolboacă SD, Jäntschi L (2008) Analysis of soil heavy metal pollution and pattern in central Transylvania. Int J Mol Sci 9(4):434–453

    Article  PubMed  CAS  Google Scholar 

  • Szabolcs I (1994) Soils and salinisation. In: Pessarakali M (ed) Handbook of plant and crop stress. Marcel and Dekker Inc., New York, pp 3–11

    Google Scholar 

  • Taebi A, Jeirani K, Mirlohi A, Zadeh Bafghi AR (2008) Phytoremediation of cyanide-polluted soils by non-woody plants. J Sci Technol Agric Natur Resour 11(42B):524–523

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Taylor GJ (1987) Exclusion of metals from the symplasm: a possible mechanism of metal tolerance in higher plants. J Plant Nutr 10(9):1213–1222

    Article  CAS  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Curr Topics Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503–550

    Article  PubMed  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Schnoor JL (1998) Uptake and transformation of TNT by hybrid poplar trees. Environ Sci Technol 32:975–980

    Article  CAS  Google Scholar 

  • Timbrell JA (2005) The Poison Paradox: chemicals as friends and foes. Oxford University, Oxford

    Google Scholar 

  • Trapp S, Christiansen H (2003) Phytoremediation of cyanide-polluted soils. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 829–862

    Google Scholar 

  • Ulfat M, Athar HR, Ashraf M, Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.). Pak J Bot 39(5):1593–1608

    Google Scholar 

  • United States Environmental Protection Agency Reports (2000) Introduction to Phytoremediation. EPA 600/R-99/107

    Google Scholar 

  • Van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

  • van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat J-F (1999) Iron homeostasis alteration in transgenic tobacco over-expressing ferritin. Plant J 17:93–97

    Article  PubMed  Google Scholar 

  • Verhaar HJM, Solbe J, Speksnijder J, van Leeuwen CJ, Hermens JLM (2000) Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere 40(8):875–883

    Article  PubMed  CAS  Google Scholar 

  • Verkleij JAC, Prast JE (1990) Cadmium tolerance and co-tolerance in Silene vulgaris. New Phytol 111:637–645

    Article  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007a) Fate of RDX and TNT in agronomic plants. Environ Poll 148:148–154

    Article  CAS  Google Scholar 

  • Vila M, Mehier S, Lorber-Pascal S, Laurent F (2007b) Phytotoxicity to and uptake of RDX by rice. Environ Poll 145(3):813–817

    Article  CAS  Google Scholar 

  • Vogel KP, Haskins FA, Gorz HJ (1987) Potential for hydrocyanic acid poisoning of livestock by indiangrass. J Range Manag 40(6):506–509

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wang WS, Shan XQ, Wen B, Zhang SZ (2003) Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53(5):523–530

    Article  PubMed  CAS  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499S

    PubMed  Google Scholar 

  • Westbroek P, De Jong EW (1983) Biomineralization and biological metal accumulation: biological and geological perspectives. In: Biomineralization and biological metal accumulation. Springer Science Publishers, The Netherlands

    Google Scholar 

  • White WLB, Arias-Garzon DI, McMahon JM, Sayre RT (1998) Cyanogenesis in cassava: the role of hydroxynitrile lyase in root cyanide production. Plant Physiol 116(4):1219–1225

    Article  PubMed  CAS  Google Scholar 

  • White WLB, McMahon JM, Sayre RT (1994) Regulation of cyanogenesis in cassava. ISHS Acta Hort 375:69–78

    CAS  Google Scholar 

  • Wildhaber ML, Schmitt CJ (1996) Hazard ranking of contaminated sediments based on chemical analysis, laboratory toxicity tests and benthic community composition: prioritizing sites for remedial action. J Great Lakes Res 22:639–652

    Article  CAS  Google Scholar 

  • Windisch W (2002) Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Anal Bioanaly Chem 372:421–425

    Article  CAS  Google Scholar 

  • Wolterbeek H Th (2001) Evaluation of the transfer factor of technetium from water to aquatic plants. J Radioanaly Nuclear Chem 249(1):221–225

    Article  Google Scholar 

  • Wong-Chong GM, Ghosh RS, Bushey JT, Ebbs SD, Neuhauser EF (2006) Natural sources of cyanide. Cyanide in water and soil: chemistry, risk, and management. CRC Press, Taylor and Francis Group, Boca Raton, FL, pp 25–40

    Google Scholar 

  • Wright DA, Welbourn P (2002) Environmental toxicology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yagdi K, Kacar O, Azkan N (2000) Heavy metal contamination in soils and its effects in agriculture. Ondokuz Mayis Universiteis, Ziraat Fakultesi Dergisi 15:109–115

    Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:765–768

    Article  Google Scholar 

  • Yu X, Trapp S, Zhou P, Wang C, Zhou X (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56(2)121–126

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Zhou P, Liu Y, Hu H (2005) Detoxification of cyanide by woody plants. Arch Environ Contam Toxicol 49:150–154

    Article  PubMed  CAS  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Poll 197(1):23–34

    Article  CAS  Google Scholar 

  • Zheng A, Dzombak DA, Luthy RG (2004) Effects of thiocyanate on the formation of free cyanide during chlorination and ultraviolet disinfection of publicly owned treatment works secondary effluent. Water Environ Res 76(3):205–212

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zuccarini P (2008) Ion uptake by halophytic plants to mitigate saline stress in Solanum lycopersicon L., and different effect of soil and water salinity. Soil Water Res 3(2):62–73

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ashraf , Munir Ozturk or Muhammad Sajid Aqeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ashraf, M., Ozturk, M., Ahmad, M.S.A. (2010). Toxins and Their Phytoremediation. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_1

Download citation

Publish with us

Policies and ethics