Skip to main content

Frequency-Tunable Capability

  • Chapter
  • 1497 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter introduces the concept of frequency-tunable capability applied to RF power amplifiers, making some definitions and establishing the metrics for the evaluation of the design, which is the subject of Chap. 6. It also surveys the main techniques found in the literature that could be used in the design of the frequency-tunable amplifier. The advantages and drawbacks of each technique are discussed and the choice of the coupled-inductors technique is explained, together with the description of its use to implement a novel tunable output impedance matching network to be employed in multiband RF power amplifiers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    These two words, very often employed by Barrie Gilbert to explain his inventiveness, which drove him to very important contributions to the field of analog circuit design, are, according to him [19], the most potent path to invention. It also led us to this invention [30].

  2. 2.

    f c_c=2.25 GHz, f c_lo=2 GHz, f c_hi=2.5 GHz, and Δf c=0.5 GHz.

  3. 3.

    Wobbulator is a sweep signal generator that was used in cathode-ray oscilloscopes and as the local oscillator in panoramic superheterodyne receivers.

References

  1. Agile Materials (2004) Tunability—An enabling technology for wireless. White Paper. URL http://www.agilerf.com/pdf/Tunability_WhitePaper.pdf

  2. Albertoni F, Fanucci L, Neri B, Sentieri EA (2001) Tuned LNA for RFICs using boot-strapped inductor. In: IEEE Radio Freq Integr Circuits Symp (RFIC’01), Phoenix, AZ, pp 83–86

    Google Scholar 

  3. Arell T, Hongsmatip T (1993) A unique MMIC broadband power amplifier approach. IEEE J Solid-State Circ 28(10):1005–1010

    Article  Google Scholar 

  4. Bahl IJ (2004) Low loss matching (LLM) design technique for power amplifiers. IEEE Microw Mag 5(4):66–71

    Article  Google Scholar 

  5. Ballweber BM, Gupta R, Allstot DJ (2000) A fully integrated 0.5–5.5 GHz CMOS distributed amplifier. IEEE J Solid-State Circ 35(2):231–239

    Article  Google Scholar 

  6. Bantas S, Koutsoyannopoulos Y (2004) CMOS active-LC bandpass filters with coupled-inductor Q-enhancement and center frequency tuning. IEEE Trans Circ Syst II 51(2):69–76

    Article  Google Scholar 

  7. Bantas S, Papananos Y, Koutsoyannopoulos Y (1999) Cmos tunable bandpass RF filters utilizing coupled on-chip inductors. In: Proc Int Symp Circ and Syst (ISCAS’99), Orlando, FL, vol 2, pp 581–584

    Google Scholar 

  8. Bartlett JL, Chang MCF, Marcy HO, Pedrotti KD, Pehlke DR, Seabury CW, Yao JJ, Mehrotra D, Tham JLJ (2001) Integrated tunable high efficiency power amplifier. US Patent

    Google Scholar 

  9. Britannica (2010) Brittanica encyclopedia online. URL http://www.britannica.com/

  10. Castro A (1966) Automatic tuning system for high-power amplifiers. IEEE Trans Commun Technol 14(6):824–834

    Article  Google Scholar 

  11. Cegielski T, Matuszewski R (2004) The design of medium power C-band balanced amplifiers. In: Int Conf Microw Radar Wirel Commun (MIKON’04), Warsaw, Poland, vol 1, pp 107–110

    Google Scholar 

  12. Cripps SC (2006) RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood

    Google Scholar 

  13. Cusmai G, Repossi M, Albasini G, Svelto F (2007) A 3.2-to-7.3 GHz quadrature oscillator with magnetic tuning. In: IEEE Int Solid-State Circuits Conf Dig Tech Pap (ISSCC’07), San Francisco, CA, pp 92–93, 589

    Google Scholar 

  14. D’Angelo G, Fanucci L, Monorchio A, Monterastelli A, Neri B (1999) High-quality active inductors. Electron Lett 35(20):1727–1728

    Article  Google Scholar 

  15. Eisele K, Engelbrecht R, Kurokawa K (1965) Balanced transistor amplifiers for precise wideband microwave applications. In: IEEE Int Solid-State Circuits Conf Dig Tech Pap (ISSCC’65), San Francisco, CA, vol VIII, pp 18–19

    Google Scholar 

  16. Fernández-Bolaños M, Lisec T, Dainesi P, Ionescu AM (2008) Thermally stable distributed MEMS phase shifter for airborne and space applications. In: Eur Microw Conf (EuMC’08), Amsterdam, The Netherlands, pp 100–103

    Google Scholar 

  17. Gee WA, Allen PE (2007) Cmos integrated LC RF bandpass filter with transformer-coupled Q-enhancement and optimized linearity. In: Proc Int Symp Circuits and Syst (ISCAS’07), New Orleans, LA, pp 1445–1448

    Google Scholar 

  18. Georgescu B, Pekau H, Haslett J, McRory J (2003) Tunable coupled inductor Q-enhancement for parallel resonant LC tanks. IEEE Trans Circ Syst II 50(10):750–713

    Article  Google Scholar 

  19. Gilbert B (2003) The beginning of translinear circuit design. IEEE Solid-State Circ Soc Newsl 8(1):6–7

    Google Scholar 

  20. Ginzton EL, Hewlett WR, Jasberg JH, Noe JD (1948) Distributed amplification. Proc IRE 36(8):956–969

    Article  Google Scholar 

  21. Gonzalez G (1997) Microwave Transistor Amplifiers: Analysis and Design, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  22. Hara S, Tokumitsu T, Aikawa M (1989) Lossless broad-band monolithic microwave active inductors. IEEE Trans Microw Theory Tech 37(12):1979–1984

    Article  Google Scholar 

  23. Hoarau C, Bailly PE, Arnould JD, Ferrari P, Xavier P (2007) A RF tunable impedance matching network with a complete design and measurement methodology. In: Eur Microw Conf (EuMC’07), Munich, Germany, pp 751–754

    Google Scholar 

  24. Horowitz P, Hill W (1989) The Art of Electronics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  25. Ikalainen PK (1989) An RLC matching network and application in 1–20 GHz monolithic amplifier. In: 1989 IEEE MTT-S Int Microw Symp Dig (IMS’89), Long Beach, CA, vol 3, pp 1115–1118

    Google Scholar 

  26. Jin JD, Hsu SSH (2008) A 0.18-μm CMOS balanced amplifier for 24-GHz applications. IEEE J Solid-State Circ 43(2):440–445

    Article  Google Scholar 

  27. Johnson KC (1949) Single-valve frequency-modulated oscillators—2.—Practical details of design and use. Wirel. World—Radio Electron LV(5):168–170

    Google Scholar 

  28. Johnson KC (1949) Single-valve frequency-modulated oscillators—new principle giving wide coverage. Wirel World—Radio Electron LV(4):122–123

    Google Scholar 

  29. Ker MD, Hsiao YW, Kuo BJ (2005) ESD protection design for 1 to 10-GHz distributed amplifier in CMOS technology. IEEE Trans Microw Theory Tech 53(9):2672–2681

    Article  Google Scholar 

  30. Kobayashi K, Watanabe Y, Dal Fabbro P, Kayal M (2009) Tunable impedance matching circuit. International Patent, wO 2009/034659 A1

    Google Scholar 

  31. Kobayashi KW, Oki AK, Umemoto DK, Block TR, Streit DC (1998) A novel self-oscillating HEMT-HBT cascode VCO-mixer using an active tunable inductor. IEEE J Solid-State Circ 33(6):870–876

    Article  Google Scholar 

  32. Kulyk J, Haslett J (2006) A monolithic CMOS 2368±30 MHz transformer based Q-enhanced series-C coupled resonator bandpass filter. IEEE J Solid-State Circ 41(2):362–374

    Article  Google Scholar 

  33. Liu RC, Lin CS, Deng KL, Wang H (2004) Design and analysis of DC–to–14-GHz and 22-GHz CMOS cascode distributed amplifiers. IEEE J Solid-State Circ 39(8):1370–1374

    Article  Google Scholar 

  34. Lubecke VM, Barber B, Chan E, Lopez D, Gross ME, Gammel P (2001) Self-assembling MEMS variable and fixed RF inductors. IEEE Trans Microw Theory Tech 49(11):2093–2098

    Article  Google Scholar 

  35. Mukhopadhyay R, Park Y, Lee CH, Nuttinck S, Laskar J (2004) Frequency-agile CMOS RFICs for multi-mode RF front-end. In: Proc Eur Conf Wirel Technol, Amsterdam, The Netherlands, pp 9–12

    Google Scholar 

  36. Neo WCE, Lin Y, Liu XD, De Vreede LCN, Larson LE, Spirito M, Pelk MJ, Buisman K, Akhnoukh A, De Graauw A, Nanver LK (2006) Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks. IEEE J Solid-State Circ 14(9):2166–2176

    Article  Google Scholar 

  37. Niclas KB, Wilser WT, Kritzer TR, Pereira RR (1983) On theory and performance of solid-state microwave distributed amplifiers. IEEE Trans Microw Theory Tech 83(6):447–456

    Article  Google Scholar 

  38. Noren B (2004) Thin film Barium Strontium Titanate (BST) for a new class of tunable RF components. Microw J 47:210–220

    Google Scholar 

  39. Okada K, Sugawara H, Ito H, Itoi K, Sato M, Abe H, Ito T, Masu K (2006) On-chip high-Q variable inductor using wafer-level chip-scale package technology. IEEE Trans Electron Devices 53(9):2401–2406

    Article  Google Scholar 

  40. Papapolymerou J, Lange KL, Goldsmith CL, Malczewski A, Kleber J (2003) Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends. IEEE Trans Microw Theory Tech 51(1):271–278

    Article  Google Scholar 

  41. Pehlke DR, Burstein A, Chang MF (1997) Extremely high-Q tunable inductor for Si-based RF integrated circuit applications. In: IEEE Int Electron Devices Meet Tech Dig (IEDM’97), Washington, DC, pp 63–66

    Google Scholar 

  42. Pozar DM (1998) Microwave Engineering, 2nd edn. Wiley, New York

    Google Scholar 

  43. Raab FH (2001) Electronically tunable class-E power amplifier. In: 2001 IEEE MTT-S Int Microw Symp Dig (IMS’01), Phoenix, AZ, vol 3, pp 1513–1516

    Google Scholar 

  44. Raab FH (2007) Electronically tuned power amplifier. US Patent

    Google Scholar 

  45. Raab FH, Ruppe D (2003) Frequency-agile class-D power amplifier. In: Int Conf HF Radio Syst Tech, University of Bath, UK, pp 81–85

    Google Scholar 

  46. Radmanesh MM (2001) Radio Frequency and Microwave Electronics Illustrated. Prentice-Hall, Upper Saddle River

    Google Scholar 

  47. Rong S, Luong HC (2007) A 1 V 4 GHz-and-10 GHz transformer-based dual-band quadrature VCO in 0.18 μm CMOS. In: Proc IEEE Cust Integr Circuit Conf (CICC’07), San Jose, CA, pp 817–820

    Google Scholar 

  48. Scandurra G, Ciofi C, Zito D (2005) A new topology for transformer based CMOS active inductances. In: PhD Res Microelectron Electron (PRIME’05), Lausanne, Switzerland, vol 1, pp 27–30

    Google Scholar 

  49. Scheele P, Goelden F, Giere A, Mueller S, Jakoby R (2005) Continuously tunable impedance matching network using ferroelectric varactors. In: 2005 IEEE MTT-S Int Microw Symp Dig (IMS’05), Long Beach, CA, pp 603–606

    Google Scholar 

  50. Shin SH, Yoo HJ (2007) A multistandard RF front-end using varactor controlled tunable interstage matching network. In: IEEE Radio Wirel Symp (RWS’07), Long Beach, CA, pp 181–184

    Google Scholar 

  51. Soorapanth T, Wong SS (2002) A 0-dB IL 2140+30 MHz bandpass filter utilizing Q-enhanced spiral inductors in standard CMOS. IEEE J Solid-State Circ 37(5):579–586

    Article  Google Scholar 

  52. Strid EW, Gleason KR (1982) A DC–12 GHz monolithic GaAsFET distributed amplifier. IEEE Trans Microw Theory Tech MTT-30(7):969–975

    Article  Google Scholar 

  53. Sullivan PJ, Xavier BA, Ku WH (1997) An integrated CMOS distributed amplifier utilizing packaging inductance. IEEE Trans Microw Theory Tech 45(10):1969–1976

    Article  Google Scholar 

  54. Thanachayanont A, Payne A (1996) VHF CMOS integrated active inductor. Electron Lett 32(11):999–1000

    Article  Google Scholar 

  55. Vicki Chen LY, Forse R, Chase D, York RA (2004) Analog tunable matching network using integrated thin-film BST capacitors. In: 2004 IEEE MTT-S Int Microw Symp Dig (IMS’04), Fort Worth, TX, vol 1, pp 261–264

    Google Scholar 

  56. Vroubel M, Yan Z, Rejaei B, Burghartz JN (2004) Integrated tunable magnetic RF inductor. IEEE Electron Device Lett 25(12):787–789

    Article  Google Scholar 

  57. Wu YC, Chang MF (2002) On-chip high-Q (>3000) transformer-type spiral inductors. Electron Lett 38(3):112–113

    Article  MathSciNet  Google Scholar 

  58. Xiao H, Schaumann R, Daasch WR, Wong PK, Pejcinovic B (2004) A radio-frequency CMOS active inductor and its application in designing high-Q filters. In: Proc Int Symp Circuits and Syst (ISCAS’04), Vancouver, Canada, vol 4, pp 197–200

    Google Scholar 

  59. Yodprasit U, Ngarmnil J (2000) Q-enhancing technique for RF CMOS active inductor. In: Proc Int Symp Circuits and Syst (ISCAS’00), Geneva, Switzerland, vol 5, pp 589–592

    Google Scholar 

  60. Ytterdal T, Cheng Y, Fjeldly TA (2003) Device Modeling for Analog and RF CMOS Circuit Design. Wiley, Chichester

    Book  Google Scholar 

  61. Zhang H, Gao H, Li GP (2005) Broad-band power amplifier with a novel tunable output matching network. IEEE Trans Microw Theory Tech 53(11):3606–3614

    Article  Google Scholar 

  62. Zhang H, Gao H, Li GP (2005) A novel tunable broadband power amplifier module operating from 0.8 GHz to 2.0 GHz. In: 2005 IEEE MTT-S Int Microw Symp Dig (IMS’05), Long Beach, CA, pp 661–664

    Google Scholar 

  63. Zhou S, Sun XQ, Carr WN (1997) A micro variable inductor chip using MEMS relays. In: Int Conf Solid-State Sens Actuators (TRANSDUCERS’97), Chicago, IL, vol 2, pp 1137–1140

    Google Scholar 

  64. Zhu X, Chen X, Ling J (2000) 2–6 GHz GaAs MMIC power amplifier. In: Int Conf Microw Millim Wave Technol (ICMMT’00), Beijing, China, pp 134–137

    Google Scholar 

  65. Zine-El-Abidine I, Okoniewski M, McRory JG (2003) A new class of tunable RF MEMS inductors. In: Int Conf MEMS NANO Smart Syst (ICMENS’03), Banff, Canada, pp 114–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Augusto Dal Fabbro .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dal Fabbro, P.A., Kayal, M. (2010). Frequency-Tunable Capability. In: Linear CMOS RF Power Amplifiers for Wireless Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9361-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9361-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9360-8

  • Online ISBN: 978-90-481-9361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics