Skip to main content

Appendix B: Procedure for Impedance Matching of Printed-Circuit RF Amplifiers

  • Chapter
  • 1537 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This second and last appendix presents a systematic procedure for impedance matching of RF amplifiers mounted on printed-circuit boards. This procedure involves two-tier de-embedding techniques and on-board impedance matching aided by the Smith chart. The application of this procedure to match a CMOS RF power amplifier operating at 5.2 GHz resulted in a power gain of 8 dB, which is 5.6 dB higher than its unmatched gain (2.4 dB) and only 1.1 dB lower than its maximum theoretical gain (9.1 dB).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It could also be a commercial RF amplifier or transistor, but, in these cases, the matching difficulties could be caused by the lack of information about package parasitics at the desired frequency.

  2. 2.

    In this example, without loss of accuracy, the step discontinuities in the microstrip line model were considered to be lossless when using the Smith Chart software.

  3. 3.

    This can also be done through matrix algebra making optional the use of the simulator.

References

  1. Abrie PLD (1985) The Design of Impedance-Matching Networks for Radio-Frequency and Microwave Amplifiers. Artech House, Dedham

    Google Scholar 

  2. ADS (2010) Advanced Design System (ADS). URL http://eesof.tm.agilent.com/products/ads_main.html

  3. Agilent (1999) 8719D network analyzers. Agilent Technologies, USA. URL http://cp.literature.agilent.com/litweb/pdf/08720-90288.pdf

  4. Agilent (2002) Applying error correction to network analyzer measurements. Application Note 1287-3. URL http://cp.literature.agilent.com/litweb/pdf/5965-7709E.pdf

  5. Agilent (2005) Accurate measurement of packaged RF devices. White Paper. URL http://cp.literature.agilent.com/litweb/pdf/5989-3246EN.pdf

  6. Agilent (2006) In-fixture measurements using vector network analyzers. Application Note 1287-9. URL http://cp.literature.agilent.com/litweb/pdf/5968-5329E.pdf

  7. Agilent (2007) 85052D 3.5mm economy calibration kit. User’s and Service Guide. URL http://cp.literature.agilent.com/litweb/pdf/85052-90079.pdf

  8. Bauer RF, Penfield P Jr (1974) De-embedding and unterminating. IEEE Trans Microw Theory Tech MTT-22(3):282–288

    Article  Google Scholar 

  9. Choi SC, Youm JE, Hwang SW (2004) Simple PCB based S-parameter extraction method for RF amplifier circuits. In: 63rd Autom RF Tech Group (ARFTG) Conf Dig, Ft Worth, TX, pp 53–59

    Google Scholar 

  10. Cripps SC (2006) RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Norwood

    Google Scholar 

  11. Dellsperger F (2005) Smith V2.03—Software for easy circuit design with Smith Chart. URL http://fritz.dellsperger.net/

  12. DuFault MD, Sharma AK (1996) A novel calibration verification procedure for millimeter-wave measurements. In: 1996 IEEE MTT-S Int Microw Symp Dig, vol 3, pp 1391–1394

    Google Scholar 

  13. Elmore G (1985) De-embedded measurements using the HP 8510 microwave network analyzer. In: 25th Autom RF Tech Group (ARFTG) Conf Dig, vol 7, pp 124–143

    Google Scholar 

  14. Engen GF, Hoer CA (1979) Thru-Reflect-Line: an improved technique for calibrating the dual six-port automatic network analyzer. IEEE Trans Microw Theory Tech MTT-27(12):987–993

    Article  Google Scholar 

  15. Fitzpatrick J (1978) Error models for systems measurement. Microw J 21(5):63–66

    MathSciNet  Google Scholar 

  16. Franzen NR, Speciale RA (1975) A new procedure for system calibration and error removal in automated S-parameter measurements. In: 5th European Microw Conf, pp 69–73

    Google Scholar 

  17. Gonzalez G (1997) Microwave Transistor Amplifiers: Analysis and Design, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  18. Infineon (2007) Simple microstrip matching for all impedances. Application Note No 022. URL http://www.infineon.com

  19. Lane R (1984) De-embedding device scattering parameters. Microw J 8:149–156

    Google Scholar 

  20. Lee TH (1998) The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, Cambridge

    Google Scholar 

  21. Marks RB (1991) A multiline method of network analyzer calibration. IEEE Trans Microw Theory Tech 39(7):1205–1215

    Article  Google Scholar 

  22. Murata (2007) Murata Chip S-parameter and Impedance Library Version 3.12.0. URL http://www.murata.com/designlib/mcsil/index.html

  23. Nickel JG, Schutt-Aine JE (2003) Matched coupled microstrip transistor amplifier methodology. IEEE Trans Adv Packag 26(4):361–367

    Article  Google Scholar 

  24. O’Reilly GT, Neidert RE, Wilson LK (1974) Designing microstrip matching networks for microwave-transistor power amplifiers. IEEE Trans Microw Theory Tech 22(12):1323–1325

    Article  Google Scholar 

  25. Pieper R, Dellsperger F (2001) Personal computer assisted tutorial for Smith charts. In: 2001 Proc 33rd Southeast Symp Syst Theory, Athens, OH, pp 139–143

    Google Scholar 

  26. Pozar DM (1998) Microwave Engineering, 2nd edn. Wiley, New York

    Google Scholar 

  27. Rehnmark S (1974) On the calibration process of automatic network analyzer systems. IEEE Trans Microw Theory Tech 22(4):457–458

    Article  Google Scholar 

  28. Rogers (2006) RO4000 series high frequency circuit materials. Data Sheet 92-004. URL http://www.rogerscorp.com/acm/literature.aspx

  29. Rytting D (1998) Network analyzer error models and calibration methods. IEEE MTT/ED Seminar: Calibration and Error Correction Techniques for Network Analysis. URL http://cpd.ogi.edu/IEEE-MTT-ED/DougRyttingSeminar.htm

  30. Scott JB (2005) Investigation of a method to improve VNA calibration in planar dispersive media through adding an asymmetrical reciprocal device. IEEE Trans Microw Theory Tech 53(9):3007–3013

    Article  Google Scholar 

  31. Silvonen KJ (1992) A general approach to network analyzer calibration. IEEE Trans Microw Theory Tech 40(4):754–759

    Article  Google Scholar 

  32. Vaitkus R, Scheitlin D (1982) A two-tier deembedding technique for packaged transistors In: 1982 IEEE MTT-S Int Microw Symp Dig, vol 82, pp 328–330

    Google Scholar 

  33. Vaitkus RL (1986) Wide-band de-embedding with a short, an open, and a through line. Proc IEEE 74(1):71–74

    Article  Google Scholar 

  34. Wartenberg SA, Grajek P (2001) De-embedding PCB fixtures for package characterization. Microw Opt Technol Lett 31(2):111–112

    Article  Google Scholar 

  35. Williams D (1990) De-embedding and unterminating microwave fixtures with nonlinear least squares. IEEE Trans Microw Theory Tech 38(6):787–791

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Augusto Dal Fabbro .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dal Fabbro, P.A., Kayal, M. (2010). Appendix B: Procedure for Impedance Matching of Printed-Circuit RF Amplifiers. In: Linear CMOS RF Power Amplifiers for Wireless Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9361-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9361-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9360-8

  • Online ISBN: 978-90-481-9361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics