Skip to main content

The Role of Histamine in Immunoregulation in Context of T-Regulatory and Invariant NKT Cells

  • Chapter
  • First Online:
Biomedical Aspects of Histamine

Abstract

Histamine (HA) is one of the most versatile biogenic amines with multiple physiological functions in the central nervous system (CNS), the respiratory and the intestinal tract due to its ability to induce severe inflammatory reactions. More recently, a number of studies have established that besides its most obvious contribution in allergic reactions, HA also exerts more subtle regulatory functions influencing the orientation of the immune response, thus rekindling interest in this field of investigation. It can influence numerous functions of the cells involved in the regulation of immune responses and hematopoiesis of macrophages, dendritic cells, T lymphocytes, B lymphocytes and endothelial cells. All these cells express histamine receptors and also secrete histamine, which can selectively recruit major effector cells into tissue sites and affect their maturation, activation, polarization, and effector functions leading to chronic inflammation. Histamine regulates antigen-specific T-helper 1 (Th1) and T-helper 2 (Th2) cells, as well as related isotype specific antibody responses. Histamine acts through its receptor called as histamine receptor (H1-H4) subtypes, which positively interferes with the peripheral antigen tolerance induced by T-regulatory cells (Tregs) through several pathways. Natural killer T (NKT) cells are the heterogeneous population of innate immune T cells that have been attracted the attention of many researchers due to their potential to regulate immune responses to a variety of pathogens, tumors, autoimmune diseases etc. A majority of NKT cells in mice are invariant NKT (iNKT) cells and are considered to be immunoregulatory in nature, due to their ability to promptly produce both Th1 and Th2 cytokines rapidly upon activation. In this chapter, we have tried to focus on HA participation in NKT cell activation by functional tuning to ensure optimal cytokine production, which leads to the recruitment and activation of other immune cells involved in inflammatory responses mediated through eosinophils, mast cells, neutrophils, conventional T lymphocytes, dendritic cells etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agea E, Russano A, Bistoni O et al (2005) Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 202:295–308

    Article  PubMed  CAS  Google Scholar 

  • Apostolou I, Cumano A, Gachelin G et al (2000) Evidence for two subgroups of CD4-CD8- NKT cells with distinct TCR alpha beta repertoires and differential distribution in lymphoid tissues. J Immunol 165:2481–2490

    PubMed  CAS  Google Scholar 

  • Apostolou I, Takahama Y, Belmant C et al (1999) Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci USA 96:5141–5146

    Article  PubMed  CAS  Google Scholar 

  • Arad G, Nussinovich R, Na’amad M et al (1996) Dual control of human interleukin-2 and interferon-gamma gene expression by histamine: activation and suppression. Cell Immunol 170:149–155

    Article  PubMed  CAS  Google Scholar 

  • Arase H, Arase N, Nakagawa K et al (1993) NK1.1+ CD4+ CD8- thymocytes with specific lymphokine secretion. Eur J Immunol 23:307–310

    Article  PubMed  CAS  Google Scholar 

  • Arase H, Arase N, Ogasawara K et al (1992) An NK1.1+ CD4+8- single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor V beta family. Proc Natl Acad Sci USA 89:6506–6510

    Article  PubMed  CAS  Google Scholar 

  • Arrang JM, Drutel G, Garbarg M et al (1995) Molecular and functional diversity of histamine receptor subtypes. Ann N Y Acad Sci 757:314–323

    Article  PubMed  CAS  Google Scholar 

  • Askenasy N, Kaminitz A, Yarkoni S (2008) Mechanisms of T regulatory cell function. Autoimmun Rev 7:370–375

    Article  PubMed  CAS  Google Scholar 

  • Bachmann MF, Kohler G, Ecabert B et al (1999) Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131

    PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Hafler DA (2004) Suppressor T cells in human diseases. J Exp Med 200:273–276

    Article  PubMed  CAS  Google Scholar 

  • Banu Y, Watanabe T (1999) Augmentation of antigen receptor-mediated responses by histamine H1 receptor signaling. J Exp Med 189:673–682

    Article  PubMed  CAS  Google Scholar 

  • Barral DC, Brenner MB (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7: 929–941

    Article  PubMed  CAS  Google Scholar 

  • Battistini L, Fischer FR, Raine CS et al (1996) CD1b is expressed in multiple sclerosis lesions. J Neuroimmunol 67:145–151

    PubMed  CAS  Google Scholar 

  • Bayram H, Devalia JL, Khair OA et al (1999) Effect of loratadine on nitrogen dioxide-induced changes in electrical resistance and release of inflammatory mediators from cultured human bronchial epithelial cells. J Allergy Clin Immunol 104:93–99

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A (1995) Mouse NK1+ T cells. Curr Opin Immunol 7:367–374

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Hunziker RD, Lantz O (1996) Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med 184:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Killeen N, Littman DR et al (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263:1774–1778

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Matzinger P, Seder RA et al (1992) Activation events during thymic selection. J Exp Med 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Rivera MN, Park SH et al (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  PubMed  CAS  Google Scholar 

  • Bendelac A, Schwartz RH (1991) CD4+ and CD8+ T cells acquire specific lymphokine secretion potentials during thymic maturation. Nature 353:68–71

    Article  PubMed  CAS  Google Scholar 

  • Benlagha K, Weiss A, Beavis A et al (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27: 20–21

    Article  PubMed  CAS  Google Scholar 

  • Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104

    Article  PubMed  CAS  Google Scholar 

  • Blumberg RS, Terhorst C, Bleicher P et al (1991) Expression of a nonpolymorphic MHC class I-like molecule, CD1D, by human intestinal epithelial cells. J Immunol 147:2518–2524

    PubMed  CAS  Google Scholar 

  • Bonish B, Jullien D, Dutronc Y et al (2000) Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol 165:4076–4085

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Dent A, Cooper S et al (2007) A role for natural killer T cells and CD1d molecules in counteracting suppression of hematopoiesis in mice induced by infection with murine cytomegalovirus. Exp Hematol 35:87–93

    Article  PubMed  CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  PubMed  CAS  Google Scholar 

  • Brutkiewicz RR (2006) CD1d ligands: the good, the bad, and the ugly. J Immunol 177:769–775

    PubMed  CAS  Google Scholar 

  • Brutkiewicz RR, Sriram V (2002) Natural killer T (NKT) cells and their role in antitumor immunity. Crit Rev Oncol Hematol 41:287–298

    Article  PubMed  Google Scholar 

  • Burdin N, Brossay L, Koezuka Y et al (1998) Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol 161:3271–3281

    PubMed  CAS  Google Scholar 

  • Burdin N, Brossay L, Kronenberg M (1999) Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 29:2014–2025

    Article  PubMed  CAS  Google Scholar 

  • Burdin N, Kronenberg M (1999) CD1-mediated immune responses to glycolipids. Curr Opin Immunol 11:326–331

    Article  PubMed  CAS  Google Scholar 

  • Carlsson R, Dohlsten M, Sjogren HO (1985) Histamine modulates the production of interferon-gamma and interleukin-2 by mitogen-activated human mononuclear blood cells. Cell Immunol 96:104–112

    Article  PubMed  CAS  Google Scholar 

  • Caron G, Delneste Y, Roelandts E et al (2001a) Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol 167:3682–3686

    PubMed  CAS  Google Scholar 

  • Caron G, Delneste Y, Roelandts E et al (2001b) Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J Immunol 166:6000–6006

    PubMed  CAS  Google Scholar 

  • Chatila TA, Blaeser F, Ho N et al (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106:R75–81

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Huang H, Paul WE (1997) NK1.1+ CD4+ T cells lose NK1.1 expression upon in vitro activation. J Immunol 158:5112–5119

    PubMed  CAS  Google Scholar 

  • Chen H, Paul WE (1998) A population of CD62Llow Nk1.1- CD4+ T cells that resembles NK1.1+ CD4+ T cells. Eur J Immunol 28:3172–3182

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Herman AE, Matos M et al (2005) Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202:1387–1397

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Hori S, Carvalho T et al (2001) Regulatory T cells: the physiology of autoreactivity in dominant tolerance and “quality control” of immune responses. Immunol Rev 182:89–98

    Article  PubMed  CAS  Google Scholar 

  • Davodeau F, Peyrat MA, Necker A et al (1997) Close phenotypic and functional similarities between human and murine alphabeta T cells expressing invariant TCR alpha-chains. J Immunol 158:5603–5611

    PubMed  CAS  Google Scholar 

  • Dellabona P, Padovan E, Casorati G et al (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4–8- T cells. J Exp Med 180:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Dohlsten M, Sjogren HO, Carlsson R (1986) Histamine inhibits interferon-gamma production via suppression of interleukin 2 synthesis. Cell Immunol 101:493–501

    Article  PubMed  CAS  Google Scholar 

  • Dunford PJ, O’Donnell N, Riley JP et al (2006) The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol 176:7062–7070

    PubMed  CAS  Google Scholar 

  • Dy M, Arnould A, Lemoine FM et al (1996) Hematopoietic progenitors and interleukin-3-dependent cell lines synthesize histamine in response to calcium ionophore. Blood 87:3161–3169

    PubMed  CAS  Google Scholar 

  • Eberl G, Fehling HJ, von Boehmer H et al (1999a) Absolute requirement for the pre-T cell receptor alpha chain during NK1.1+ TCR alphabeta cell development. Eur J Immunol 29:1966–1971

    Article  PubMed  CAS  Google Scholar 

  • Eberl G, Lees R, Smiley ST et al (1999b) Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J Immunol 162:6410–6419

    PubMed  CAS  Google Scholar 

  • Eberl G, Lowin-Kropf B, MacDonald HR (1999c) Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J Immunol 163:4091–4094

    PubMed  CAS  Google Scholar 

  • Eguchi-Ogawa T, Morozumi T, Tanaka M et al (2007) Analysis of the genomic structure of the porcine CD1 gene cluster. Genomics 89:248–261

    Article  PubMed  CAS  Google Scholar 

  • Elenkov IJ, Webster E, Papanicolaou DA et al (1998) Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J Immunol 161:2586–2593

    PubMed  CAS  Google Scholar 

  • Elewaut D, Brossay L, Santee SM et al (2000) Membrane lymphotoxin is required for the development of different subpopulations of NKT cells. J Immunol 165:671–679

    PubMed  CAS  Google Scholar 

  • Elliott KA, Osna NA, Scofield MA et al (2001) Regulation of IL-13 production by histamine in cloned murine T helper type 2 cells. Int Immunopharmacol 1:1923–1937

    Article  PubMed  CAS  Google Scholar 

  • Exley M, Garcia J, Balk SP et al (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8- T cells. J Exp Med 186:109–120

    Article  PubMed  CAS  Google Scholar 

  • Exley M, Garcia J, Wilson SB et al (2000) CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology 100:37–47

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Fehervari Z, Yamaguchi T, Sakaguchi S (2006) The dichotomous role of IL-2: tolerance versus immunity. Trends Immunol 27:109–111

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  • Gadue P, Morton N, Stein PL (1999) The Src family tyrosine kinase Fyn regulates natural killer T cell development. J Exp Med 190:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Galili U, Swanson K (1991) Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA 88:7401–7404

    Article  PubMed  CAS  Google Scholar 

  • Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  PubMed  CAS  Google Scholar 

  • Gambineri E, Torgerson TR, Ochs HD (2003) Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 15:430–435

    Article  PubMed  CAS  Google Scholar 

  • Gavin MA, Clarke SR, Negrou E et al (2002) Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 3:33–41

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Hammond KJ, Poulton LD et al (2000) NKT cells: facts, functions and fallacies. Immunol Today 21:573–583

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388

    PubMed  CAS  Google Scholar 

  • Green EA, Choi Y, Flavell RA (2002) Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16:183–191

    Article  PubMed  CAS  Google Scholar 

  • Gumperz JE, Roy C, Makowska A et al (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Gutzmer R, Langer K, Lisewski M et al (2002) Expression and function of histamine receptors 1 and 2 on human monocyte-derived dendritic cells. J Allergy Clin Immunol 109:524–531

    Article  PubMed  CAS  Google Scholar 

  • Hameg A, Gouarin C, Gombert JM et al (1999) IL-7 up-regulates IL-4 production by splenic NK1.1+ and NK1.1- MHC class I-like/CD1-dependent CD4+ T cells. J Immunol 162:7067–7074

    PubMed  CAS  Google Scholar 

  • Hammond K, Cain W, van Driel I et al (1998a) Three day neonatal thymectomy selectively depletes NK1.1+ T cells. Int Immunol 10:1491–1499

    Article  PubMed  CAS  Google Scholar 

  • Hammond KJ, Pelikan SB, Crowe NY et al (1999) NKT cells are phenotypically and functionally diverse. Eur J Immunol 29:3768–3781

    Article  PubMed  CAS  Google Scholar 

  • Hammond KJ, Poulton LD, Palmisano LJ et al (1998b) alpha/beta-T cell receptor (TCR)+CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K, Lin BT, Hardy RR (1992) Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the V beta 8 T cell receptor gene family. J Exp Med 176:269–274

    Article  PubMed  CAS  Google Scholar 

  • Heuer JG, Zhang T, Zhao J et al (2005) Adoptive transfer of in vitro-stimulated CD4+CD25+ regulatory T cells increases bacterial clearance and improves survival in polymicrobial sepsis. J Immunol 174:7141–7146

    PubMed  CAS  Google Scholar 

  • Holden CA, Chan SC, Norris S et al (1987) Histamine induced elevation of cyclic AMP phosphodiesterase activity in human monocytes. Agents Actions 22:36–42

    Article  PubMed  CAS  Google Scholar 

  • Holtzman MJ, Byers DE, Benoit LA et al (2009) Immune pathways for translating viral infection into chronic airway disease. Adv Immunol 102:245–276

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Scherer DC, Singh N et al (1999) Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice. Immunol Rev 169:31–44

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Hotermans G, Bury T, Radermecker MF (1991) Effect of histamine on tumor necrosis factor production by human monocytes. Int Arch Allergy Appl Immunol 95:278–281

    Article  PubMed  CAS  Google Scholar 

  • Huber S, Sartini D, Exley M (2003) Role of CD1d in coxsackievirus B3-induced myocarditis. J Immunol 170:3147–3153

    PubMed  CAS  Google Scholar 

  • Idzko M, la Sala A, Ferrari D et al (2002) Expression and function of histamine receptors in human monocyte-derived dendritic cells. J Allergy Clin Immunol 109:839–846

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, Chaplin DD, Wang Y et al (1999) Requirement for membrane lymphotoxin in natural killer cell development. Proc Natl Acad Sci USA 96:6336–6340

    Article  PubMed  CAS  Google Scholar 

  • Jeannin P, Delneste Y, Gosset P et al (1994) Histamine induces interleukin-8 secretion by endothelial cells. Blood 84:2229–2233

    PubMed  CAS  Google Scholar 

  • Johnson TR, Hong S, Van Kaer L et al (2002) NKT cells contribute to expansion of CD8(+) T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 76:4294–4303

    Article  PubMed  CAS  Google Scholar 

  • Joyce S, Woods AS, Yewdell JW et al (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Jutel M, Watanabe T, Klunker S et al (2001) Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413:420–425

    Article  PubMed  CAS  Google Scholar 

  • Kapsenberg ML, Jansen HM, Bos JD et al (1992) Role of type 1 and type 2 T helper cells in allergic diseases. Curr Opin Immunol 4:788–793

    Article  PubMed  CAS  Google Scholar 

  • Kashyap M, Thornton AM, Norton SK et al (2008) Cutting edge: CD4 T cell-mast cell interactions alter IgE receptor expression and signaling. J Immunol 180:2039–2043

    PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629

    Article  PubMed  CAS  Google Scholar 

  • Khan MM, Sansoni P, Engleman EG et al (1985) Pharmacologic effects of autacoids on subsets of T cells. Regulation of expression/function of histamine-2 receptors by a subset of suppressor cells. J Clin Invest 75:1578–1583

    Article  PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko SA et al (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  • Kitamura H, Ohta A, Sekimoto M et al (2000) Alpha-galactosylceramide induces early B-cell activation through IL-4 production by NKT cells. Cell Immunol 199:37–42

    Article  PubMed  CAS  Google Scholar 

  • Koyasu S (1994) CD3+CD16+NK1.1+B220+ large granular lymphocytes arise from both alpha-beta TCR+CD4-CD8- and gamma-delta TCR+CD4-CD8- cells. J Exp Med 179:1957–1972

    Article  PubMed  CAS  Google Scholar 

  • Krouwels FH, Hol BE, Lutter R et al (1998) Histamine affects interleukin-4, interleukin-5, and interferon-gamma production by human T cell clones from the airways and blood. Am J Respir Cell Mol Biol 18:721–730

    PubMed  CAS  Google Scholar 

  • Lalazar G, Preston S, Zigmond E et al (2006) Glycolipids as immune modulatory tools. Mini Rev Med Chem 6:1249–1253

    Article  PubMed  CAS  Google Scholar 

  • Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4–8- T cells in mice and humans. J Exp Med 180:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Lantz O, Sharara LI, Tilloy F et al (1997) Lineage relationships and differentiation of natural killer (NK) T cells: intrathymic selection and interleukin (IL)-4 production in the absence of NKR-P1 and Ly49 molecules. J Exp Med 185:1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Larsen RD, Rivera-Marrero CA, Ernst LK et al (1990) Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:beta-D-Gal(1,4)-D-GlcNAc alpha(1,3)-galactosyltransferase cDNA. J Biol Chem 265:7055–7061

    PubMed  CAS  Google Scholar 

  • Lee GK, Park HJ, Macleod M et al (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    Article  PubMed  CAS  Google Scholar 

  • Leite-de-Moraes MC, Diem S, Michel ML et al (2009) Cutting edge: histamine receptor H4 activation positively regulates in vivo IL-4 and IFN-gamma production by invariant NKT cells. J Immunol 182:1233–1236

    PubMed  CAS  Google Scholar 

  • Leurs R, Vollinga RC, Timmerman H (1995) The medicinal chemistry and therapeutic potentials of ligands of the histamine H3 receptor. Prog Drug Res 45:107–165

    PubMed  CAS  Google Scholar 

  • Lim HW, Broxmeyer HE, Kim CH (2006) Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J Immunol 177:840–851

    PubMed  CAS  Google Scholar 

  • Lisbonne M, Diem S, de Castro Keller A et al (2003) Cutting edge: invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171:1637–1641

    PubMed  CAS  Google Scholar 

  • Looringh van Beeck FA, Reinink P, Hermsen R et al (2009) Functional CD1d and/or NKT cell invariant chain transcript in horse, pig, African elephant and guinea pig, but not in ruminants. Mol Immunol 46:1424–1431

    Article  CAS  Google Scholar 

  • Lu LF, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  PubMed  CAS  Google Scholar 

  • MacDonald HR (1995) NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med 182:633–638

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Yamagata N, Sasho T et al (1993) Extrathymic development of V alpha 14-positive T cells. J Exp Med 177:1399–1408

    Article  PubMed  CAS  Google Scholar 

  • Malaviya R, Ross E, Jakschik BA et al (1994) Mast cell degranulation induced by type 1 fimbriated Escherichia coli in mice. J Clin Invest 93:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4:665–674

    Article  PubMed  CAS  Google Scholar 

  • Maloy KJ, Powrie F (2001) Regulatory T cells in the control of immune pathology. Nat Immunol 2:816–822

    Article  PubMed  CAS  Google Scholar 

  • Manzotti CN, Tipping H, Perry LC et al (2002) Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur J Immunol 32:2888–2896

    Article  PubMed  CAS  Google Scholar 

  • Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–799

    Article  PubMed  CAS  Google Scholar 

  • Matangkasombut P, Pichavant M, Dekruyff RH et al (2009) Natural killer T cells and the regulation of asthma. Mucosal Immunol 2:383–392

    Article  PubMed  CAS  Google Scholar 

  • Matangkasombut P, Pichavant M, Yasumi T et al (2008) Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol 121:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni A, Young HA, Spitzer JH et al (2001) Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest 108:1865–1873

    PubMed  CAS  Google Scholar 

  • Meretey K, Falus A, Taga T et al (1991) Histamine influences the expression of the interleukin-6 receptor on human lymphoid, monocytoid and hepatoma cell lines. Agents Actions 33:189–191

    Article  PubMed  CAS  Google Scholar 

  • Mesples B, Fontaine RH, Lelievre V et al (2005) Neuronal TGF-beta1 mediates IL-9/mast cell interaction and exacerbates excitotoxicity in newborn mice. Neurobiol Dis 18:193–205

    Article  PubMed  CAS  Google Scholar 

  • Metelitsa LS, Naidenko OV, Kant A et al (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167:3114–3122

    PubMed  CAS  Google Scholar 

  • Meyer EH, DeKruyff RH, Umetsu DT (2007) iNKT cells in allergic disease. Curr Top Microbiol Immunol 314:269–291

    Article  PubMed  CAS  Google Scholar 

  • Miyara M, Sakaguchi S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13:108–116

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T, Okakura-Mochizuki K, Horii A et al (1994) Histaminergic modulation of hippocampal acetylcholine release in vivo. J Neurochem 62:2275–2282

    Article  PubMed  CAS  Google Scholar 

  • Molano A, Park SH, Chiu YH et al (2000) Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses. J Immunol 164:5005–5009

    PubMed  CAS  Google Scholar 

  • Moodycliffe AM, Maiti S, Ullrich SE (1999) Splenic NK1.1-negative, TCR alpha beta intermediate CD4+ T cells exist in naive NK1.1 allelic positive and negative mice, with the capacity to rapidly secrete large amounts of IL-4 and IFN-gamma upon primary TCR stimulation. J Immunol 162:5156–5163

    PubMed  CAS  Google Scholar 

  • Morgan RK, McAllister B, Cross L et al (2007) Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and inhibits allergic asthma in a murine model. J Immunol 178:8081–8089

    PubMed  CAS  Google Scholar 

  • Mosmann TR (1994) Cytokine patterns during the progression to AIDS. Science 265:193–194

    Article  PubMed  CAS  Google Scholar 

  • Motoki K, Morita M, Kobayashi E et al (1995) Immunostimulatory and antitumor activities of monoglycosylceramides having various sugar moieties. Biol Pharm Bull 18:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Mozes E, Kohn LD, Hakim F et al (1993) Resistance of MHC class I-deficient mice to experimental systemic lupus erythematosus. Science 261:91–93

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    PubMed  CAS  Google Scholar 

  • Nakagawa K, Iwabuchi K, Ogasawara K et al (1997) Generation of NK1.1+ T cell antigen receptor alpha/beta+ thymocytes associated with intact thymic structure. Proc Natl Acad Sci USA 94:2472–2477

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa R, Motoki K, Ueno H et al (1998) Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res 58:1202–1207

    PubMed  CAS  Google Scholar 

  • Nelson BH (2004) IL-2, regulatory T cells, and tolerance. J Immunol 172:3983–3988

    PubMed  CAS  Google Scholar 

  • Nieda M, Nicol A, Koezuka Y et al (2001) TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 97:2067–2074

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A, Murphy K (1993) T-cell subsets in autoimmunity. Curr Opin Immunol 5:880–886

    Article  PubMed  Google Scholar 

  • Ohteki T, Ho S, Suzuki H et al (1997) Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T cell receptor-alpha beta+ cell development. J Immunol 159:5931–5935

    PubMed  CAS  Google Scholar 

  • Ohteki T, MacDonald HR (1994) Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4–8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med 180:699–704

    Article  PubMed  CAS  Google Scholar 

  • Osna N, Elliott K, Khan MM (2001a) The effects of histamine on interferon gamma production are dependent on the stimulatory signals. Int Immunopharmacol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  • Osna N, Elliott K, Khan MM (2001b) Regulation of interleukin-10 secretion by histamine in TH2 cells and splenocytes. Int Immunopharmacol 1:85–96

    Article  PubMed  CAS  Google Scholar 

  • Palathumpat V, Dejbakhsh-Jones S, Holm B et al (1992) Different subsets of T cells in the adult mouse bone marrow and spleen induce or suppress acute graft-versus-host disease. J Immunol 149:808–817

    PubMed  CAS  Google Scholar 

  • Paust S, Lu L, McCarty N et al (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101:10398–10403

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo CA, Letterio JJ, Thornton AM et al (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246

    Article  PubMed  CAS  Google Scholar 

  • Poluektova LY, Khan MM (1998) Protein kinase A inhibitors reverse histamine-mediated regulation of IL-5 secretion. Immunopharmacology 39:9–19

    Article  PubMed  CAS  Google Scholar 

  • Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4–8- T lymphocytes to a microbial antigen. Nature 360:593–597

    Article  PubMed  CAS  Google Scholar 

  • Porcelli SA (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol 59:1–98

    Article  PubMed  CAS  Google Scholar 

  • Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329

    Article  PubMed  CAS  Google Scholar 

  • Quezada SA, Bennett K, Blazar BR et al (2005) Analysis of the underlying cellular mechanisms of anti-CD154-induced graft tolerance: the interplay of clonal anergy and immune regulation. J Immunol 175:771–779

    PubMed  CAS  Google Scholar 

  • Rapoport MJ, Jaramillo A, Zipris D et al (1993) Interleukin-4 reverses T cell unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 87–99

    Google Scholar 

  • Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Khan MA, Shaji D et al (2008a) Vesicular stomatitis virus matrix protein impairs CD1d-mediated antigen presentation through activation of the p38 MAPK pathway. J Virol 82:12535–12542

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M et al (2008b) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–5645

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Sriram V, Du W et al (2006) Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer 118:3045–3053

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Webb TJ, Khan MA et al (2005) Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. J Immunol 175:4301–4308

    PubMed  CAS  Google Scholar 

  • Robson MacDonald H, Lees RK, Held W (1998) Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J Exp Med 187:2109–2114

    Article  PubMed  CAS  Google Scholar 

  • Russano AM, Bassotti G, Agea E et al (2007) CD1-restricted recognition of exogenous and self-lipid antigens by duodenal gammadelta+ T lymphocytes. J Immunol 178:3620–3626

    PubMed  CAS  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Salomon B, Lenschow DJ, Rhee L et al (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Nakayama T, Tanaka Y et al (1999) Induction of differentiation of pre-NKT cells to mature Valpha14 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci USA 96:7439–7444

    Article  PubMed  CAS  Google Scholar 

  • Schlicker E, Fink K, Hinterthaner M et al (1989) Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors. Naunyn Schmiedebergs Arch Pharmacol 340:633–638

    Article  PubMed  CAS  Google Scholar 

  • Schlicker E, Malinowska B, Kathmann M et al (1994) Modulation of neurotransmitter release via histamine H3 heteroreceptors. Fundam Clin Pharmacol 8:128–137

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J, Fleissner S, Heimann-Weitschat I et al (1994) Histamine increases anti-CD3 induced IL-5 production of TH2-type T cells via histamine H2-receptors. Agents Actions 42:81–85

    Article  PubMed  CAS  Google Scholar 

  • Schofield L, McConville MJ, Hansen D et al (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225–229

    Article  PubMed  CAS  Google Scholar 

  • Seder RA, Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12:635–673

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2000) Regulatory T cells in autoimmmunity. Annu Rev Immunol 18:423–449

    Article  PubMed  CAS  Google Scholar 

  • Siegmund K, Feuerer M, Siewert C et al (2005) Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106:3097–3104

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Hong S, Scherer DC et al (1999) Cutting edge: activation of NKT cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 163:2373–2377

    PubMed  CAS  Google Scholar 

  • Sirois J, Menard G, Moses AS et al (2000) Importance of histamine in the cytokine network in the lung through H2 and H3 receptors: stimulation of IL-10 production. J Immunol 164:2964–2970

    PubMed  CAS  Google Scholar 

  • Soga F, Katoh N, Kishimoto S (2007) Histamine prevents apoptosis in human monocytes. Clin Exp Allergy 37:323–330

    Article  PubMed  CAS  Google Scholar 

  • Sonoda KH, Exley M, Snapper S et al (1999) CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J Exp Med 190:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Spada FM, Koezuka Y, Porcelli SA (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 188:1529–1534

    Article  PubMed  CAS  Google Scholar 

  • Stark H (2007) Histamine receptors. Biotrends Rev 1: 2–9. http: //http://www.biotrend.com

    Google Scholar 

  • Sykes M (1990) Unusual T cell populations in adult murine bone marrow. Prevalence of CD3+CD4-CD8- and alpha beta TCR+NK1.1+ cells. J Immunol 145:3209–3215

    PubMed  CAS  Google Scholar 

  • Szeberenyi JB, Pallinger E, Zsinko M et al (2001) Inhibition of effects of endogenously synthesized histamine disturbs in vitro human dendritic cell differentiation. Immunol Lett 76:175–182

    Article  PubMed  CAS  Google Scholar 

  • Takahama Y, Sharrow SO, Singer A (1991) Expression of an unusual T cell receptor (TCR)-V beta repertoire by Ly-6C+ subpopulations of CD4+ and/or CD8+ thymocytes. Evidence for a developmental relationship between Ly-6C+ thymocytes and CD4-CD8-TCR-alpha beta+ thymocytes. J Immunol 147:2883–2891

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nieda M, Koezuka Y et al (2000a) Analysis of human V alpha 24+ CD4+ NKT cells activated by alpha-glycosylceramide-pulsed monocyte-derived dendritic cells. J Immunol 164:4458–4464

    PubMed  CAS  Google Scholar 

  • Takahashi T, Tagami T, Yamazaki S et al (2000b) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Dennert G (1993) The development of autoimmunily in C57BL/6 Ipr mice correlates with the disappearance of natural killer type 1-posltive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 177:155–164

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Boden EK, Henriksen KJ et al (2004) Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur J Immunol 34:2996–3005

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Henriksen KJ, Boden EK et al (2003) Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352

    PubMed  CAS  Google Scholar 

  • Taylor PA, Noelle RJ, Blazar BR (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 193:1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28:491–496

    Article  PubMed  CAS  Google Scholar 

  • Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25:235–241

    Article  PubMed  CAS  Google Scholar 

  • Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110:2983–2990

    Article  PubMed  CAS  Google Scholar 

  • van der Pouw Kraan TC, Snijders A, Boeije LC et al (1998) Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J Clin Invest 102:1866–1873

    Article  PubMed  Google Scholar 

  • Van Rhijn I, Koets AP, Im JS et al (2006) The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d. J Immunol 176:4888–4893

    PubMed  Google Scholar 

  • Vannier E, Dinarello CA (1993) Histamine enhances interleukin (IL)-1-induced IL-1 gene expression and protein synthesis via H2 receptors in peripheral blood mononuclear cells. Comparison with IL-1 receptor antagonist. J Clin Invest 92:281–287

    Article  PubMed  CAS  Google Scholar 

  • Vannier E, Miller LC, Dinarello CA (1991) Histamine suppresses gene expression and synthesis of tumor necrosis factor alpha via histamine H2 receptors. J Exp Med 174:281–284

    Article  PubMed  CAS  Google Scholar 

  • Vicari AP, Herbelin A, Leite-de-Moraes MC et al (1996) NK1.1+ T cells from IL-7-deficient mice have a normal distribution and selection but exhibit impaired cytokine production. Int Immunol 8:1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Goldschneider I, Foss D et al (1997) Direct thymic involvement in anterior chamber-associated immune deviation: evidence for a nondeletional mechanism of centrally induced tolerance to extrathymic antigens in adult mice. J Immunol 158:2150–2155

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Todome Y, Ohkuni H et al (2002) Cysteine protease activity and histamine release from the human mast cell line HMC-1 stimulated by recombinant streptococcal pyrogenic exotoxin B/streptococcal cysteine protease. Infect Immun 70:3944–3947

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer J, Galli SJ (2005) Decreased susceptibility of mast cell-deficient Kit(W)/Kit(W-v) mice to the development of 1, 2-dimethylhydrazine-induced intestinal tumors. Lab Invest 85:388–396

    Article  PubMed  CAS  Google Scholar 

  • Weltman JK (2000) Update on histamine as a mediator of inflammation. Allergy Asthma Proc 21:125–128

    Article  PubMed  CAS  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Motoki K, Ueno H et al (1996) Enhancing effects of (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-2-(N-hexacosanoylamino)-1,3,4-octadecanetriol (KRN7000) on antigen-presenting function of antigen-presenting cells and antimetastatic activity of KRN7000-pretreated antigen-presenting cells. Oncol Res 8:399–407

    PubMed  CAS  Google Scholar 

  • Yankelevich B, Knobloch C, Nowicki M et al (1989) A novel cell type responsible for marrow graft rejection in mice. T cells with NK phenotype cause acute rejection of marrow grafts. J Immunol 142:3423–3430

    PubMed  CAS  Google Scholar 

  • Yoshimoto T, Paul WE (1994) CD4pos NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Zelenika D, Adams E, Humm S et al (2001) The role of CD4+ T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev 182:164–179

    Article  PubMed  CAS  Google Scholar 

  • Zeng D, Lewis D, Dejbakhsh-Jones S et al (1999) Bone marrow NK1.1(–) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 189:1073–1081

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dwivedi, V., Gourapura, R.J. (2010). The Role of Histamine in Immunoregulation in Context of T-Regulatory and Invariant NKT Cells. In: Khardori, N., Khan, R., Tripathi, T. (eds) Biomedical Aspects of Histamine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9349-3_5

Download citation

Publish with us

Policies and ethics