Skip to main content

Histamine Role in Malaria

  • Chapter
  • First Online:
Book cover Biomedical Aspects of Histamine

Abstract

Histamine, a biogenic amine derived from the decarboxylation of amino acid histidine by an enzyme histidine decarboxylase. It involves the local immune responses as well as regulating physiological functions. As part of an immune response to foreign pathogen (including malarial parasite infection), histamine is produced by basophils and by mast cells found in nearby connective tissue. Elevation in immune mediators such as IL-1, IL-6, IL-8, TNF-α, NO and histamine have been associated with disease severity in malarial infection. Histamine releasing factor (HRF) is a peptide described in mice and humans, causes the release of histamine from basophils. HRF belongs to a class of protein called translationally controlled tumour protein (TCTP) homologs. Recently a Plasmodium falciparum TCTP is identified. This protein has a high homology to human HRF. The central nervous system signs and symptoms such as drowsiness, coma, multiple seizures, destruction of blood brain barrier etc are supposed to be due to histamine secretion in CNS during Plasmodium falciparum infection. In this chapter we will discuss the pathophysiological effects of histamine in severe malaria infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TNF-α:

tumor necrosis factor-α

IFN-γ:

interferon-γ

IL:

interleukin

HRF:

histamine releasing factor (HRF)

BBB:

blood brain barrier

TCTP:

translationally controlled tumour protein (TCTP)

HDC:

histidine decarboxylase

NMDA:

N-methyl-D-aspartate

References

  • Bakker NPM, Eling WMC, DeGroot AMTh et al (1992) Attenuation of malaria infection, paralysis and lesions in the central nervous system by low protein diet in rats. Acta Tropica 50:285–293

    Article  PubMed  CAS  Google Scholar 

  • Barsoum GS, Gaddum JH (1935) The pharmacological estimation of adenosine and histamine in blood. J Physiol (Lond) 85:1–14

    CAS  Google Scholar 

  • Beaven MA (1978) Histamine: its role in physiological and pathological processes. In: Karger S (ed) Monographs in allergy, vol 13. Munchen Paris, New York, p 36

    Google Scholar 

  • Beghdadi W, Porcherie A, Schneider BS et al (2008) Inhibition of histamine-mediated signalling confers significant protection against severe malaria in mouse models of disease. JEM 205(2):395–408

    Article  CAS  Google Scholar 

  • Bekker JM (1993) Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science 261:104–106

    Article  Google Scholar 

  • Bhattacharya U, Roy S, Kar PK et al (1988) Histamine and kinin system in experimental malaria. Ind J Med Res 88:558–563

    CAS  Google Scholar 

  • Bheekha-Escura R, MacGlashan DW Jr, Langdon JM et al (2000) Human recombinant histamine-releasing factor activates human eosinophils and the eosinophilic cell line. Blood 96:2191–2198

    PubMed  CAS  Google Scholar 

  • Bhisutthibhan J, Pan XQ, Hossler PA et al (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273:16192–1619

    Article  Google Scholar 

  • Billings GFT, Maegraith B (1938) Chemical changes in tissues following obstruction of the blood supply. Quart J Exp Physiol 27:249–269

    CAS  Google Scholar 

  • Boertje SB, LeBeau D, Williams C (1989) Blockade of histamine stimulated alterations in cerebrovascular permeability by H2-receptor antagonist cimetidine. Neuropharmacology 28:749–752

    Article  PubMed  CAS  Google Scholar 

  • Butcher GA, Garland T, Ajdukiewicz AB et al (1990) Serum tumor necrosis factor associated with malaria in patients in the Solomon Islands. Trans R Soc Trop Med Hyg 84:658–661

    Article  PubMed  CAS  Google Scholar 

  • Camacho LH, Wilairatana P, Weiss G et al (1999) The eosinophilic response and haematological recovery after treatment for Plasmodium falciparum malaria. Trop Med Int Health 4:471–475

    Article  PubMed  CAS  Google Scholar 

  • Clark IA, Rockett KA (1996) Nitric oxide and parasitic diseases. Adv Parasitol 37:1–56

    Article  PubMed  CAS  Google Scholar 

  • Crawley J, Smith S, Kirkham F et al (1996) Seizures and status epilepticus in childhood cerebral malaria. Q J Med 89:591–597

    Article  CAS  Google Scholar 

  • Dale HH, Richards AN (1918) The vasodilator action of histamine and some other substances. J Physiol Lond 52:110–165

    PubMed  CAS  Google Scholar 

  • Davis TM, Ho M, Supanaranond W (1991) Changes in the peripheral blood eosinophils count in falciparum malaria. Acta Trop 48:243–246

    Article  PubMed  CAS  Google Scholar 

  • Debron P, Dumont N, Nyongabo T et al (1994) Immunologic and biochemical alterations in severe falciparum malaria: relation to neurological symptoms and outcome. Clin Infect Dis 19:450–455

    Google Scholar 

  • de Kossodo S, Grau GE (1993) Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol 151:4811–4820

    PubMed  Google Scholar 

  • Desowitz RS (1987) The pathophysiology of malaria after Maegraith. Ann Trop Med Parasitol 81:599–606

    PubMed  CAS  Google Scholar 

  • Duarte MIS, Corbert CEP, Boulos M et al (1985) Ultrastructure of the lung in the falciparum malaria. Am J Trop Med Hyg 34:31–35

    PubMed  CAS  Google Scholar 

  • Edington GM (1967) Pathology of malaria in West Africa. Br Med J 1:715–718

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, Fredholm BB (1983) Characterization of adenosine receptors in isolated cerebral arteries of cat. Br J Pharmacol 80:631–637

    Article  PubMed  CAS  Google Scholar 

  • Enwonwu CO, Afolabi BM, Salako LA et al (1999) Hyperphenylalaninemia in children with falciparum malaria. Q J Med 92: 495–503

    Article  CAS  Google Scholar 

  • Enonwu CO, Afolabi BM, Salako LO et al (2000) Increased plasma levels of histidine and histamine in falciparum malaria: relevance to severity of infection. J Neural Transm 107:1273–1287

    Article  Google Scholar 

  • Fern EB, Edirisinghe JS, Targett GAT (1984) Increased severity of malaria infection in rats fed supplementary amino acids. Trans Roy Soc Trop Med 78:839–841

    Article  CAS  Google Scholar 

  • Fish DR, Espir MLE (1988) Convulsions associated with prophylactic antimalarial drugs: implications for people with epilepsy. Br Med J 297:526–527

    Article  CAS  Google Scholar 

  • Friedland JS, Ho M, Remick DG et al (1993) Interleukinin-8 and Plasmodium falciparum malaria in Thiland. Trans R Soc Trop Med Hyg 87:54–55

    Article  PubMed  CAS  Google Scholar 

  • Gietzen DW, Dixon KD, Truong BG et al (1996) Indispensible amino acid deficiency and increased seizure susceptibility in rats. Am J Physiol 271:R18-R24

    PubMed  CAS  Google Scholar 

  • Goodwin LG, Richards WH (1960) Pharmacologically active peptides in the blood and urine of animals infected with Babesia rodhaini and other pathogenic organisms. Br J Pharmac Chemother 15:152–159

    Article  CAS  Google Scholar 

  • Grau GE, Heremans H, Piguet PF et al (1989a) Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc Natl Acad Sci USA 86: 5572–5574

    Article  PubMed  CAS  Google Scholar 

  • Grau GE, Taylor TE, Molyneux ME et al (1989b) Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med 320:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Hendrickse RG, Hasan AH, Olumide LO et al (1971) Malaria in early childhood. An investigation of five hundred seriously ill children in whom a “clinical diagnosis of malaria was made on admission to the children’s emergency room at University College Hospital, Ibadan”. Ann Trop Med Parasitol 65:1–20

    PubMed  CAS  Google Scholar 

  • Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    PubMed  CAS  Google Scholar 

  • Hinshaw LB, Jordan MM, Vick J (1961) Mechanism of histamine release in endotoxin shock. Am J Physiol 200:987–989

    PubMed  CAS  Google Scholar 

  • Ho M, Schollaardt T, Snape S et al (1998) Endogenous interleukinin-10 modulates proinflammatory response in Plasmodium falciparum malaria. J Infect Dis 178:520–525

    Article  PubMed  CAS  Google Scholar 

  • Hunt NH, Golenser J, Chan-Ling T et al (2006) Immunopathogenesis of cerebral malaria. Int J Parasitol 36: 569–582

    Article  PubMed  CAS  Google Scholar 

  • Joo F, Leagyel I, Kovacs J et al (1992) Regulation in transendorhelial transport in cerebral microvessels: the role of second messenger generating systems. Prog Brain Res 91:177–197

    Article  PubMed  CAS  Google Scholar 

  • Kreier JP (1980) Malaria: epidemiology, chemotherapy, morphology and metabolism, vol 1. Academic, New York, p 363

    Google Scholar 

  • Krogh A (1929) The anatomy and physiology of capillaries, revised edn. Yale University, New Haven

    Google Scholar 

  • Kurtzhals JAL, Reimert CM, Tette E et al. (1998) Increased eosinophil activity in acute Plasmodium falciparum infection association with cerebral malaria. Clin Exp Immunol 112:303–307

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski D, Hill AV, Sambou I et al (1990) TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336:1201–1204

    Article  PubMed  CAS  Google Scholar 

  • Lewis T (1927) The blood vessels of the human skin and their responses. Shaw and Sons, London

    Google Scholar 

  • Lintunen M, Sallmen T, Karisredt K et al (1998) Postnatal expression of Hi-receptor mRNA in the rat brain: correlation to L-histidine decarboxylase expression and local upregulation in limbic seizures. Eur J Neurosci 10:2287–2301

    Article  PubMed  CAS  Google Scholar 

  • Linuma K, Yokoyama H, Otsuki T et al (1993) Histamine H1 receptors in complex partial seizures. Lancet 341:238

    Google Scholar 

  • Lou J, Donati YR, Juillard P et al (1997) Platelets play an important role in TNF-induced microvascular endothelial cell pathology. Am J Pathol 151:1397–1405

    PubMed  CAS  Google Scholar 

  • Ma N, Madigan MC, Chan-Ling T et al (1997) Compromised blood-nerve barrier, astrogliosis, and myelin disruption in optic nerves during fatal murine cerebral malaria. Glia 19: 135–151

    Article  PubMed  CAS  Google Scholar 

  • Mabeza GF, Moyo VM, Thuma PE et al (1985) Predictors of severity of illness on presentation in children with cerebral malaria. Ann Trop Med Parasitol 89:221–228

    Google Scholar 

  • MacDonald S, Bhisutthibhan J, Shapiro TA et al (2001) Immune mimicry in malaria: Plasmodium falciparum secrets a functional histamine-releasing factor homolog in vitro and in vivo. PNAS 98(19):10829–10832

    Article  PubMed  CAS  Google Scholar 

  • MacDonald SM, Rafnar T, Langdon J et al (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269:688–690

    Article  PubMed  CAS  Google Scholar 

  • Maegraith B, Fletcher A (1972) The pathogenesis of mammalian malaria. Adv Parasitol 10:49–75

    Article  PubMed  CAS  Google Scholar 

  • Maegraith BG (1966) Pathogenic processes in malaria. In: The pathology of parasitic diseases, Fourth Symp, Br Soc Parasitology Oxford, Blackwell

    Google Scholar 

  • Maegraith BG, Onabanjo AO (1969) The involvement of histamine in malaria. Br J Pharmacol 37:535–536

    Google Scholar 

  • Maegraith BG, Onabanjo AO (1970) The effects of histamine in malaria. Br J Pharmacol 39:755–764

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari RK (1990) The role of cytokines in malaria infection. Bull World Health Organ 68(Suppl):138–144

    PubMed  Google Scholar 

  • Marsh K, English M, Crawley J (1996) The pathogenesis of severe malaria in African children. Ann Trop Med Parasitol 90:221–228

    Google Scholar 

  • McGregor IA (1987) Thoughts on malaria in pregnancy with consideration of some factors which influence remedial strategies.Parassitologia 29:153–163

    CAS  Google Scholar 

  • Medana IM, Hunt NH, Chan-Ling T (1997a) Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19:91–103

    Article  PubMed  CAS  Google Scholar 

  • Medana IM, Hunt NH, Chaudhri G (1997b) Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes. Am J Pathol 150:1473–1486

    PubMed  CAS  Google Scholar 

  • Migsena P, Areekul S (1987) Capillary permeability function in malaria. Ann Trop Med Parasito 81:549–560

    Google Scholar 

  • Molyneux ME, Taylor TE, Wirima JJ et al (1989) Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med 71:441–459

    PubMed  CAS  Google Scholar 

  • Mordmuller BG, Metzger WG, Juillard P et al (1997) Tumor necrosis factor in Plasmodium falciparum malaria: high plasma level is associated with fever, but high production capacity is associated with rapid fever clearance. Eur Cytokine Network 8:29–35

    CAS  Google Scholar 

  • Murphy SC, Breman JG (2001) Gaps in childhood malaria burden in Africa: cerebral malaria neurological sequelae, anemia, respiratory distress, hypoglycaemia and complications of pregnancy. Am J Trop Med Hyg 64:57–67

    PubMed  CAS  Google Scholar 

  • Newton CRJC, Peshu N, Kendal B et al (1994) Brain swelling and ischaemia in Kenyans children with cerebral malaria. Arch Dis Childh 70:281–287

    Article  PubMed  CAS  Google Scholar 

  • Perlmann P, Perlmann H, Eighazali G et al (1999) IgE and tumor necrosis factor in malaria infection. Immunol Lett 65:29–33

    Article  PubMed  CAS  Google Scholar 

  • Peters W, Ekong R, Robinson BL et al (1990) The chemotherapy of rodent malaria. XLV. Reversal of chloroquin resistance in rodent and human plasmodium by antihistaminic agents. Ann Trop Med Parasitol 84:541–551

    PubMed  CAS  Google Scholar 

  • Schayer RW (1960) Relationship of induced histidine decarboxylase activity and histamine synthesis to shock from stress and endotoxin. Am J Physiol 198:1187–1192

    PubMed  CAS  Google Scholar 

  • Schluesener HJ, Kremsner PG, Meyermann R (1998) Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathol (Berl) 96:575–580

    Article  CAS  Google Scholar 

  • Schmid G, Przuntek H, Fricke L et al (1978) Increased histidine and histamine content in the brain of chronic uremic rats. Cause of enhanced cerebral cyclic adenosine monophosphate in uremia? Am J Clin Nutr 31:1665–1668

    PubMed  CAS  Google Scholar 

  • Schofield L, Ferreira A, Altszuler R et al (1987) Interferon-gamma inhibits the intrahepatocytic development of malaria parasites in vitro. J Immunol 139:2020–2025

    PubMed  CAS  Google Scholar 

  • Schroeder JT, Lichtenstein LM, MacDonald SM (1997) Recombinant histamine-releasing factor enhances IgE-dependent IL-4 and IL-13 secretion by human basophils J Immunol 159:447–452

    PubMed  CAS  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M et al (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    PubMed  CAS  Google Scholar 

  • Schwartz JF, Patterson JH (1978) Toxic encephalopathy related to anthistamine-barbiturate antiemetic medication. Am J Dis Child 132:37–39

    PubMed  CAS  Google Scholar 

  • Shahid M, Tripathi T, Sobia F et al (2009) Histamine, histamine receptors, and their role in immunomodulation: an updated systematic review. Open Immunol J 2:9–41

    Article  CAS  Google Scholar 

  • Singh N, Puri SK (1998) Casual prophylactic activity of antihistaminic agents against Plasmodium yoelii nigriensis infection in swiss mice. Acta Tropica 69:255–260

    Article  PubMed  CAS  Google Scholar 

  • Skirrow MB, Chongsuphajaisiddhi T, Maegraith BG (1964) The circulation in malaria.II. Portal angiography in monkeys (Macaca mulatta) infected with Plasmodium knowlesi and in shock following manipulation of the gut. Ann Trop Med Parasit 58:502–510

    PubMed  CAS  Google Scholar 

  • Sowunmi A (1996) Hepatomegaly in acute falciparum malaria in children. Trans Roy Soc Trop Med Hyg 90:540–542

    Article  PubMed  CAS  Google Scholar 

  • Sowunmi A, Odula AMJ, Ogundahunsi OAT et al (1998) Enhancement of the antimalarial effect of chloroquine by chloropheniramine in vivo. Trop Med Int Hlth 3:177–183

    Article  CAS  Google Scholar 

  • Srichaikul T, Archararit N, Siriasawakul T et al (1976) Histamine changes in falciparum malaria. Trans R Soc Trop Med Hyg 70:36–38

    Article  PubMed  CAS  Google Scholar 

  • Trigg PI, Kondrachine AV (1998) The current global malaria situation. In: Sherman IW (ed) Malaria: parasite biology, pathogenesis, and protection. Am Soc Microbiol. Washington, DC, pp 11–22

    Google Scholar 

  • Tuomisto L, Tacke U (1986) Is histamine an anticonvulsive inhibitory transmitter? Neuropharmacology 31:503–509

    Google Scholar 

  • Wada H, Inagaki N, Yamatodani A et al (1991). Is the histaminergic neuron system a regulatory centre for whole brain activity? TINS 14:415–418

    PubMed  CAS  Google Scholar 

  • Wahl M, Schilling L (1993) Regulation of cerebral blood flow: a brief review. Acta Neurochir 59(Suppl):3–10

    CAS  Google Scholar 

  • Walker O, Salako LA, Sowunmi A et al (1992) Prognostic risk-factors and post-mortem findings in cerebral malaria in children. Trans Roy Soc Trop Med Hyg 86:491–483

    Article  Google Scholar 

  • Wassmer SC, Combes V, Candal FJ (2006) Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 74:645–653

    Article  PubMed  CAS  Google Scholar 

  • Waterlow JC, Fern EB (1981) Free amino acid pools and their regulation. In: Waterlow JC, Stephen JML (eds) Nitrogen metabolism in man. Appl Science, London, pp 1–16

    Google Scholar 

  • White NJ (1998) In: Malaria pathophysiology Sherman IW (ed) Malaria: parasite biology, pathogenesis, and protection, Am Soc Microbiol. Washington, DC, pp 371–385

    Google Scholar 

  • White NJ, Ho M (1992) The pathophysiology of malaria. Adv Parasitol 31:83–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Raza, A., Khan, H.M., Shujatullah, F. (2010). Histamine Role in Malaria. In: Khardori, N., Khan, R., Tripathi, T. (eds) Biomedical Aspects of Histamine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9349-3_19

Download citation

Publish with us

Policies and ethics