Skip to main content

The Neuronal Histamine and it’s Receptors as New Therapeutic Targets for Food Intake and Obesity

  • Chapter
  • First Online:
Book cover Biomedical Aspects of Histamine
  • 694 Accesses

Abstract

Histamine neurons and histamine receptors have distributed in the brain and addressed in their implications of regulatory energy homeostasis. Several studies using agonist/antagonist of neuronal histamine and it’s receptors demonstrated that they have been shown to be involved in food intake and obesity. In addition, adipocytokine leptin regulates food intake and obesity partially via neuronal histamine and it’s receptors. Furthermore, recent studies have provided evidence that regulation of the diurnal rhythm of food intake through neuronal histamine is a crucial factor in the development of obesity. Thus, we focused on these roles of the neuronal histamine and it’s receptors in regulating the food intake and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TMN:

tuberomammillary nucleus

HDC:

histidine decarboxylase

IP3:

inositol-1,4,5-triphosphate

DAG:

1,2-diacylglycerol

cAMP:

cyclic adenosine monophosphate

α-FMH:

alpha-fluoromethylhistidine

PVN:

paraventricullar nucleus

UCPs:

uncoupling proteins

IAs:

inverse agonists

VLPO:

ventrolateral preoptic nucleus

REM:

rapid eye movement

WT:

wild-type

ARC:

arcuate nucleus

VMH:

ventromedial nucleus

References

  • Ahima RS (2005) Central actions of adipocyte hormones. Trends Endocrinol Metab 16:307–313

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Yanagihara H, Hayashi Y et al (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146:5631–5636

    Article  PubMed  CAS  Google Scholar 

  • Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:832–837

    Article  PubMed  CAS  Google Scholar 

  • Attoub S, Moizo L, Sobhani I et al (2001) The H3 receptor is involved in cholecystokinin inhibition of food intake in rats. Life Sci 69:469–478

    Article  PubMed  CAS  Google Scholar 

  • Balthasar N, Coppari R, McMinn J et al (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42:983–991

    Article  PubMed  CAS  Google Scholar 

  • Barak N (2008) Betahistine: what’s new on the agenda? Expert Opin Investig Drugs 17:795–804

    Article  PubMed  CAS  Google Scholar 

  • Barak N, Greenway FL, Fujioka K et al (2008) Effect of histaminergic manipulation on weight in obese adults: a randomized placebo controlled trial. Int J Obes (Lond) 32:1559–1565

    Article  CAS  Google Scholar 

  • Birdsall NJ (1991) Cloning and structure-function of the H2 histamine receptor. Trends Pharmacol Sci 12:9–10

    Article  PubMed  CAS  Google Scholar 

  • Bouret SG, Simerly RB (2004) Minireview: leptin and development of hypothalamic feeding circuits. Endocrinology 145:2621–2626

    Article  PubMed  CAS  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  PubMed  CAS  Google Scholar 

  • Celanire S, Wijtmans M, Talaga P (2005) Histamine H3 receptor antagonists reach out for the clinic. Drug Discov Today 10:1613–1627

    Article  PubMed  CAS  Google Scholar 

  • Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • de Esch IJ, Thurmond RL, Jongejan A et al (2005) The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol Sci 26:462–469

    PubMed  Google Scholar 

  • Esbenshade TA, Fox GB, Cowart MD (2006) Histamine H3 receptor antagonists: preclinical promise for treating obesity and cognitive disorders. Mol Interv 6:77–88

    Article  PubMed  CAS  Google Scholar 

  • Feldmann HM, Golozoubova V, Cannon B et al (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209

    Article  PubMed  CAS  Google Scholar 

  • Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  PubMed  CAS  Google Scholar 

  • Friedman JM (2004) Modern science versus the stigma of obesity. Nat Med 10:563–569

    Article  PubMed  CAS  Google Scholar 

  • Fulop AK, Foldes A, Buzas E et al (2003) Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology 144:4306–4314

    Article  PubMed  Google Scholar 

  • Gentile S (2009) Contributing factors to weight gain during long-term treatment with second-generation antipsychotics. A systematic appraisal and clinical implications. Obes Rev 10:527–542

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  PubMed  CAS  Google Scholar 

  • Han M, Deng C, Burne TH et al (2008) Short- and long-term effects of antipsychotic drug treatment on weight gain and H1 receptor expression. Psychoneuroendocrinology 33:569–580

    Article  PubMed  CAS  Google Scholar 

  • Hancock AA, Bennani YL, Bush EN et al (2004) Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. Eur J Pharmacol 487:183–197

    Article  PubMed  CAS  Google Scholar 

  • Hancock AA, Brune ME (2005) Assessment of pharmacology and potential antiobesity properties of H3 receptor antagonists/inverse agonists. Expert Opin Investig Drugs 14:223–241

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Qu WM, Li WD et al (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970

    Article  PubMed  CAS  Google Scholar 

  • Inoue I, Yanai K, Kitamura D et al (1996) Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci USA 93:13316–13320

    Article  PubMed  CAS  Google Scholar 

  • Itoh E, Fujimiya M, Inui A (1999) Thioperamide, a histamine H3 receptor antagonist, powerfully suppresses peptide YY-induced food intake in rats. Biol Psychiatry 45:475–481

    Article  PubMed  CAS  Google Scholar 

  • Jethwa PH, Barrett P, Turnbull Y et al (2009) The role of histamine 3 receptors in the control of food intake in a seasonal model of obesity: the Siberian hamster. Behav Pharmacol 20:155–165

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen EA, Vogelsang TW, Knigge U et al (2006) Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology 83:289–294

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Kalra PS (2004) NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 38:201–211

    Article  PubMed  CAS  Google Scholar 

  • Kasaoka S, Tsuboyama-Kasaoka N, Kawahara Y et al (2004) Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition 20:991–996.

    Article  PubMed  CAS  Google Scholar 

  • Kim SF, Huang AS, Snowman AM et al (2007) Antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci USA 104:3456–3459

    Article  PubMed  CAS  Google Scholar 

  • Lecklin A, Etu-Seppala P, Stark H (1998) Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res 793:279–288

    Article  PubMed  CAS  Google Scholar 

  • Leurs R, Bakker RA, Timmerman H et al (2005) The histamine H3 receptor from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4:107–120

    Article  PubMed  CAS  Google Scholar 

  • Machidori H, Sakata T, Yoshimatsu H et al (1992) Zucker obese rats: defect in brain histamine control of feeding. Brain Res 590:180–186

    Article  PubMed  CAS  Google Scholar 

  • Malmlof K, Golozoubova V, Peschke B et al (2006) Increase of neuronal histamine in obese rats is associated with decreases in body weight and plasma triglycerides. Obesity (Silver Spring) 14:2154–2162

    Article  CAS  Google Scholar 

  • Malmlof K, Zaragoza F, Golozoubova V et al (2005) Influence of a selective histamine H3 receptor antagonist on hypothalamic neural activity, food intake and body weight. Int J Obes (Lond) 29:1402–1412

    Article  CAS  Google Scholar 

  • Masaki T, Chiba S, Yasuda T et al (2004) Involvement of hypothalamic histamine H1-receptor in the regulation of feeding rhythm and obesity. Diabetes 53:2250–2260

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Chiba S, Yoshimichi G et al (2003) Neuronal histamine regulates food intake, adiposity, and uncoupling protein expression in agouti yellow (A(y)/a) obesemice. Endocrinology 144:2741–2748

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H (2006) The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol Sci 27:279–284

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H (2007a) Neuronal histamine and its receptors in food intake and obesity. Mini Rev Med Chem 7:821–825

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H (2007b) Neuronal histamine and its receptors in obesity and diabetes. Current Diabetes Rev 3:212–221

    Article  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H, Chiba S et al (2000b) Impaired response of UCP family to cold exposure in diabetic (db/db) mice. Am J Physiol Regul Integr Comp Physiol 279:R1305-R1309

    PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H, Chiba S et al (2001a) Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes 50:385–391

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H, Chiba S et al (2001b) Central infusion of histamine reduces fat accumulation and up-regulates UCP family in leptin resistant obese mice. Diabetes 50:376–384

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H, Kakuma T et al (1999) Induction of rat uncoupling protein-2 gene treated with tumour necrosis factor alpha in vivo. Eur J Clin Invest 29:76–82

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H, Sakata T (2000a) Expression of rat uncoupling protein family mRNA levels by chronic treatment with thyroid hormone. Int J Obes Relat Metab Disord 24:S162-S164

    Article  PubMed  CAS  Google Scholar 

  • McGinty D, Szymusiak R (2000) The sleep-wake switch: a neuronal alarm clock. Nat Med 6:510–511

    Article  PubMed  CAS  Google Scholar 

  • Michelsen KA, Lozada A, Kaslin J et al (2005) Histamine-immunoreactive neurons in the mouse and rat suprachiasmatic nucleus. Eur J Neurosci 22:1997–2004

    Article  PubMed  Google Scholar 

  • Mieda M, Sakurai T (2009) Integrative physiology of orexins and orexin receptors. CNS Neurol Disord Drug Targets 8:281–295

    Article  PubMed  CAS  Google Scholar 

  • Mignot E, Taheri S, Nishino S (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci 5:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger RE, Lukman H, Nadeau BG (1998) Circadian rhythms in the Zucker obese rat: assessment and intervention. Appetite 30:255–267

    Article  PubMed  CAS  Google Scholar 

  • Mollet A, Lutz TA, Meier S et al (2001) Histamine H1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am J Physiol Regul Integr Comp Physiol 281:R1442–R1448

    PubMed  CAS  Google Scholar 

  • Morimoto T, Yamamoto Y, Mobarakeh JI et al (1999) Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol Behav 67:679–683

    Article  PubMed  CAS  Google Scholar 

  • Morimoto T, Yamamoto Y, Yamatodani A (2000) Leptin facilitates histamine release from the hypothalamus in rats. Brain Res 868:367–369

    Article  PubMed  CAS  Google Scholar 

  • Morimoto T, Yamamoto Y, Yamatodani A (2001) Brain histamine and feeding behavior. Behav Brain Res 124:145–150

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Shapiro DA, George SR et al (2001) Discovery of a novel member of the histamine receptor family. Mol Pharmacol 59:427–433

    PubMed  CAS  Google Scholar 

  • Parmentier R, Ohtsu H, Djebbara-Hannas Z et al (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22:7695–7711

    PubMed  CAS  Google Scholar 

  • Sakata T, Ookuma K, Fukagawa K et al (1988) Blockade of the histamine H1-receptor in the rat ventromedial hypothalamus and feeding elicitation. Brain Res 441:403–407

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M et al (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    PubMed  CAS  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F et al (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    PubMed  CAS  Google Scholar 

  • Shimba S, Ishii N, Ohta Y et al (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102:12071–12076

    Article  PubMed  CAS  Google Scholar 

  • Sindelar DK, Shepperd ML, Pickard RT et al (2004) Central H3R activation by thioperamide does not affect energy balance. Pharmacol Biochem Behav 78:275–283

    Article  PubMed  CAS  Google Scholar 

  • Takahashi KA, Cone RD (2005) Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus NPY/AgRP neurons. Endocrinology 146:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Suwa H, Ishikawa T et al (2002) Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype. J Clin Invest 110:1791–1799

    PubMed  CAS  Google Scholar 

  • Tardieu S, Micallef J, Gentile S et al (2003) Weight gain profiles of new anti-psychotics: public health consequences. Obes Rev 4:129–38

    Article  PubMed  CAS  Google Scholar 

  • Terao A, Steininger TL, Morairty SR et al (2004) Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci Lett 355:81–84

    Article  PubMed  CAS  Google Scholar 

  • Timmerman H (1992) Cloning of the H1 histamine receptor. Trends Pharmacol Sci 13:6–7

    Article  PubMed  CAS  Google Scholar 

  • Toftegaard CL, Knigge U, Kjaer A et al (2003) The role of hypothalamic histamine in leptin-induced suppression of short-term food intake in fasted rats. Regul Pept 111:83–90

    Article  PubMed  CAS  Google Scholar 

  • Toyota H, Dugovic C, Koehl M et al (2002) Behavioral characterization of mice lacking histamine H3 receptors. Mol Pharmacol 62:389–397

    Article  PubMed  CAS  Google Scholar 

  • Tsuda K, Yoshimatsu H, Niijima A et al (2002) Hypothalamic histamine neurons activate lipolysis in rat adipose tissue. Exp Biol Med (Maywood) 227:208–213

    CAS  Google Scholar 

  • Tuomisto L, Yamatodani A, Jolkkonen J et al (1994) Inhibition of brain histamine synthesis increases food intake and attenuates vasopressin response to salt loading in rats. Methods Find Exp Clin Pharmacol 16:355–359

    PubMed  CAS  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  Google Scholar 

  • Unger RH (2004) The hyperleptinemia of obesity-regulator of caloric surpluses. Cell 117:145–146

    Article  PubMed  CAS  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  PubMed  CAS  Google Scholar 

  • Wirshing DA, Wirshing WC, Kysar L et al (1999) Novel antipsychotics: comparison of weight gain liabilities. J Clin Psychiatry 60:358–363

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Zheng X, Sehgal A et al (2008) Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8:289–300

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka A, Tsujino N, Funahashi H et al (2002) Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun 290:1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Yasuda T, Masaki T, Chiba S et al (2004a) L-histidine stimulates sympathetic nerve activity to brown adipose tissue in rats. Neurosci Lett 362:71–74

    Article  PubMed  CAS  Google Scholar 

  • Yasuda T, Masaki T, Sakata T et al (2004b) Hypothalamic neuronal histamine regulates sympathetic nerve activity and expression of uncoupling protein 1 mRNA in brown adipose tissue in rats. Neuroscience 125:535–540

    Article  PubMed  CAS  Google Scholar 

  • Yoshimatsu H, Chiba S, Tajima D et al (2002) Histidine suppresses food intake through its conversion into neuronal histamine. Exp Biol Med (Maywood) 227:63–68

    CAS  Google Scholar 

  • Yoshimatsu H, Itateyama E, Kondou S et al (1999) Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes 48:2286–2291

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto R, Miyamoto Y, Shimamura K et al (2006) Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus. Proc Natl Acad Sci USA 103:13866–13671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Masaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Masaki, T. (2010). The Neuronal Histamine and it’s Receptors as New Therapeutic Targets for Food Intake and Obesity. In: Khardori, N., Khan, R., Tripathi, T. (eds) Biomedical Aspects of Histamine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9349-3_13

Download citation

Publish with us

Policies and ethics