Skip to main content

Biological Characteristics of Histamine Receptors in Airways Disease Management

  • Chapter
  • First Online:
Biomedical Aspects of Histamine

Abstract

Histamine, a biogenic amine is an important mediator isolated from ergot extracts and released from activated mast cells provoked by allergen and has a substantial role in the pathophysiology of asthma. It not only mediates multiple biological actions but also play an important role in vascular dilatation and smooth muscles contraction during anaphylaxis. Cell growth and differentiation, a significant event in the biological system have been regulated by its receptors both in normal and transformed tissues. The discovery of noble histamine H4-receptors prompted us to reinvestigate the role of histamine in pulmonary allergic responses. In asthma and other types of allergic inflammation, mast cells and basophils are the postulated major sources of histamine. In this chapter, we would highlight the potential histamine role in airways diseases and try to update the current aspects of histamine in asthma and fill the gap in existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DCs:

dendritic cells

Th1:

T helper 1 cells

Th2:

T helper 2 cells

IFN-γ:

interferon gamma

MHC II:

major histocompatibility complex class II antigens

GM-CSF:

granulocyte macrophage colony-stimulating factor

IL:

interleukine

HDC:

histidine decarboxylase

IgE:

immunoglobulin-E

COAD:

chronic obstructive airways disease

AHR:

airway hyper responsiveness

MCs:

mast cells

COPD:

chronic obstructive pulmonary disease

ETS:

environmental tobacco smoke

HNMT:

histamine N-methyltransferase

H1:

histamine H1-receptor

H2:

histamine H2 receptor

H3:

histamine H3 receptor

H4:

histamine H4 receptor

CXCl12:

chemokine (C-X-C motif) ligand 12

OVA:

ovalumin

References

  • Akdis CA, Blaser K (2003) Histamine in the immune regulation of allergic inflammation. J Allergy Clin Immunol 112:15–22

    PubMed  CAS  Google Scholar 

  • Anonymous 1: National Institutes of Health – common cold. http://www3.niaid.nih.gov/topics/commonCold/. Retrieved on 2008-05-07

  • Anonymous 2: http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=asthma3&part=A39. Acc-essed Oct 2009

  • Anonymous 3: American Thoracic Society (1987) Standards for the diagnosis and care of pati-ents with chronic obstructive pulmonary disease (COPD) and asthma. Am Rev Respir Dis 136:225–244

    Google Scholar 

  • Anonymous 4: The state of asthma in America: asthma in America survey. http://www.asthmainamerica.com. Accessed 9 Feb 2009

  • Anonymous 5: World Health Report (2000) World Health Organization, Geneva. http://www.who.int/whr/2000/en/statistics.htm. Accessed 12 Nov 2009

  • Anonymous 6: The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon general, department of health and human services. Washington, DC, US, 2006

    Google Scholar 

  • Anonymous 7: http://www.spirxpert.com/brrespuk/histamine.htm. Accessed 24 Nov 2009

  • Babe KS, Serafin WE (1996) Histamine, bradykinin, and their antagonists. Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 581–593

    Google Scholar 

  • Bahous J, Cartier A, Ouimet G et al (1984) Nonallergic bronchial hyperexcitability in chronic bronchitis. Am Rev Respir Dis 129:216–220

    PubMed  CAS  Google Scholar 

  • Barnes PJ, Chung KF, Page CP (1998) Inflammatory mediators of asthma: an update. Pharmacol Rev 50:515–596

    PubMed  CAS  Google Scholar 

  • Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir 22:672–688

    CAS  Google Scholar 

  • Behrendt CE (2005) Mild and moderate to severe COPD in nonsmokers. Distinct demographic profiles. Chest 128:1239–1244

    PubMed  Google Scholar 

  • Bhat KN, Arroyave CM, Marney SR et al (1976) Plasma histamine changes during provoked bronchospasm in asthmatic patients. J Allergy Clin Immunol 58:647–656

    PubMed  CAS  Google Scholar 

  • Bhatia RS (2006) Rising trend in respiratory diseases: reasons and remedies. In: Bhatia RS (ed) Selected topics in chest medicine. Arora, Lucknow, India, pp 23–34

    Google Scholar 

  • Bhatia RS, Kant S (2008) Bronchial asthma, 1st edn. Peepee, India

    Google Scholar 

  • Birring SS, Brightling CE, Bradding P et al (2002) Clinical, radiologic, and induced sputum features of chronic obstructive pulmonary disease in nonsmokers: a descriptive study. Am J Respir Crit Care Med 166:1078–1083

    PubMed  Google Scholar 

  • Bissonnette EY (1996) Histamine inhibits tumor necrosis factor a release by mast cells through H2 and H3 receptors. Am J Respir Cell Mol Biol 14:620–626

    PubMed  CAS  Google Scholar 

  • Boskabady MH, Snashall PD (1997) Enhanced histamine H1 receptor blockade with chlorpheniramine in the asthmatic tracheobronchial tree: further evidence for increased drug delivery in asthma. Med JIRI 11:115–122

    Google Scholar 

  • Boucher RC, Ranga V, Pare PD et al (1978) Effect of histamine and methacholine on guinea pig tracheal permeability to HRP. J Appl Physiol 45:939–948

    PubMed  CAS  Google Scholar 

  • Bourne HR, Melmon KL, Lichtenstein LM (1971) Histamine augments leukocyte adenosine 3, 5-monophosphate and blocks antigenic histamine release. Science 173:743

    PubMed  CAS  Google Scholar 

  • Broide D, Gleich G, Cuomo A et al (1991) Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. J Allergy Clin Immunol 88:637–648

    PubMed  CAS  Google Scholar 

  • Bruce C, Weatherstone R, Seaton A et al. (1976) Histamine levels in plasma, blood and urine in severe asthma, and the effect of corticosteroid treatment. Thorax 31:724–729

    PubMed  CAS  Google Scholar 

  • Caron G, Delneste Y, Roelandts E et al (2001) Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J Immunol 167:3682–3686

    PubMed  CAS  Google Scholar 

  • Casale TB, Wood D, Richardson HB et al (1987) Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness. J Clin Invest 79:1197–1203

    PubMed  CAS  Google Scholar 

  • Celli BR, Halbert RJ, Nordyke RJ et al (2005) Airway obstruction in never smokers: results from the third national health and nutrition examination survey. Am J Med 118:1364–1372

    PubMed  Google Scholar 

  • Cerri C, Neri T, Tedone R et al (2006) Histamine-stimulated monocytes release microparticles that upregulate IL-8 synthesis by human alveolar ephitelial cells. (P-1347) http://www.ersnet.org/learning_resources_player/abstract_print_06/files/113.pdf. Accessed 30 Nov 2009

  • Cockcroft DWE, Killian DN, Mellon JJA et al (1977) Bronchial reactivity to inhaled histamine: a method and clinical survey Clin Allergy 7:235–243

    CAS  Google Scholar 

  • Curry J (1947) Comparative action of acetylbetamethylcholine and histamine on the respiratory tract in normals, patients with hay fever and subjects with bronchial asthma. J Clin Invest 26:430–438

    PubMed  CAS  Google Scholar 

  • Daugherty BL (2004) Histamine H4 antagonism: a therapy for chronic allergy? Br J Pharmacol 142:5–7

    PubMed  CAS  Google Scholar 

  • Dayal HH, Khuder S, Sharrar R et al (1994) Passive smoking in obstructive respiratory disease in an industrialized urban population. Environ Res 65:161–171

    PubMed  CAS  Google Scholar 

  • Devalia JL, Davies RJ (1991) Human nasal and bronchial epithelial cells in culture. An overview of their characteristics and function. Allergy Proc 12:71–79

    PubMed  CAS  Google Scholar 

  • Devalia JL, Rusznak C, Davies RJ (2000a) Epithelial cell dysfunction in rhinitis, in asthma and rhinitis. In: Busse WW, Holgate ST (eds) Blackwell Science, London, pp 841–854

    Google Scholar 

  • Devalia JL, Wang JH, Davies RJ (2000b) Airway epithelial cells. In: Page CP, Banner KH, Spina D (eds) Cellular mechanisms in airway inflammation. Birkhäuser, Basel, pp 245–262

    Google Scholar 

  • Diel F, Horr B, Borck H et al (1999) Pyrethroids and piperonyl-butoxide affect human T-lymphocytes in vitro. Toxicol Lett 107:65–74

    PubMed  CAS  Google Scholar 

  • Dijkstra D, Leurs R, Chazot P et al (2007) Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. J Allergy Clin Immunol 120:300–307

    PubMed  CAS  Google Scholar 

  • Dunford PJ, O’Donnell N, Riley JP et al (2006) The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol 176:7062–7070

    PubMed  CAS  Google Scholar 

  • Dunford PJ, Williams KN, Desai PJ et al (2007) Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 119:176–183

    PubMed  CAS  Google Scholar 

  • Dunlop LS, Smith AP (1977) The effect of histamine antagonists on antigen-induced contraction of sensitized human bronchus in vitro. Br J Pharmacol 59:475P

    PubMed  CAS  Google Scholar 

  • Dusser DJ, Djokic TD, Borson DB (1989) Cigarette smoke induces bronchoconstrictor hyperresposiveness to substance P and inactivates airways netural endopeptidase in guinea pig. J Clin Invest 84:900–906

    PubMed  CAS  Google Scholar 

  • Dy M, Schneider E (2004) Histamine-cytokine connection in immunity and hematopoiesis. Cytokine Growth Factor Rev 15:393–410

    PubMed  CAS  Google Scholar 

  • Eisner MD, Balmes J, Katz BP et al (2005) Life time environmental tobacco smoke exposure and the risk of chronic obstructive pulmonary disease. Environ Health Perspect 4:7–15

    Google Scholar 

  • Elenkov IJ, Webster E, Papanicolaou DA et al (1998) Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J Immunol 161:2586–2593

    PubMed  CAS  Google Scholar 

  • Fletcher CM (1968) Bronchial infection and reactivity in chronic bronchitis. J R Coll Physiol (London) 2:183–90

    Google Scholar 

  • Gantner F, Sakai K, Tusche MW et al (2002) Histamine H4 and H2 receptors control histamine induced interleukin-16 release from human CD8+ T cells. J Pharmacol Exp Ther 303:300–307

    PubMed  CAS  Google Scholar 

  • Garcia-Martin E, Mendoza JL, Martinez C et al (2006) Severity of ulcerative colitis is associated with a polymorphism at diamine oxidase gene but not at histamine N-methyltransferase gene. World J Gastroenterol 12:615–620

    PubMed  CAS  Google Scholar 

  • Godot V, Arock M, Garcia G et al (2007) H4 Histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol 120:827–843

    PubMed  CAS  Google Scholar 

  • Goto Y, Uchida Y, Nomura A et al (2000) Dislocation of E-cadherin in the airway epithelium during an antigen-induced asthmatic response. Am J Respir Cell Mol Biol 23:712–718

    PubMed  CAS  Google Scholar 

  • Gutzmer R, Langer K, Lisewski M et al (2002) Expression and function of histamine receptors 1 and 2 on human monocyte-derived dendritic cells. J Allergy Clin Immunol 109:524–531

    PubMed  CAS  Google Scholar 

  • Han-Pin K, Ling-Chung L (1995) Sensory neuropeptides in netural endopeptidase activity in guinea pig aiways. Life Sci 57:2187–2196

    Google Scholar 

  • Hart PH (2001) Regulation of the inflammatory response in asthma by mast cell products. Immunol Cell Biol 79:149

    PubMed  CAS  Google Scholar 

  • Hathirat S, Renzetti AD, Mitchell M (1970) Measurement of the total lung capacity by helium dilution in a constant volume system. Am Rev Respir Dis 102:760–770

    PubMed  CAS  Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H et al (1997) International union of pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    PubMed  CAS  Google Scholar 

  • Hofstra CL, Desai PJ, Thurmond RL et al (2003) Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 305:1212–1221

    PubMed  CAS  Google Scholar 

  • Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364:709–721

    PubMed  Google Scholar 

  • Hulbert WM, Mclean T, Hogg JC (1985) The effect of acute airways inflammation on bronchial reactivity in guinea pig. Am Rev Respiratory Dis 132:7–11

    PubMed  CAS  Google Scholar 

  • Ikawa Y, Suzuki M, Shiono S et al (2005) Histamine H4 receptor expression in human synovial cells obtained from patients suffering from rheumatoid arthritis. Biol Pharm Bull 28:2016–2018

    PubMed  CAS  Google Scholar 

  • James AL, Dirks P, Ohtaka H (1987) Airwaya responsiveness to intravenous and inhaled acetylcholine in the guine pig after cigarette smoke exposure. Am Rev Respiratory Dis 136:1158–1162

    PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M et al (1999) Immunobiology: the immune system in health and disease, 4th edn. Current Biology Publication, London, p 602

    Google Scholar 

  • Jarjour N, Calhoun W, Schwartz L et al (1991) Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am Rev Respir Dis 144:83–87

    PubMed  CAS  Google Scholar 

  • Jeffery PK (1997) Pathology of asthma and COPD: a synopsis. Eur Resip Rev 7:206–210

    Google Scholar 

  • Jones RS, Meade F (1961) A theoretical and experimental analysis of anomalies in the estimation of pulmonary diffusing capacity by the single breath method. Q J Exp Physiol 46:131–143

    CAS  Google Scholar 

  • Jutel M, Klunker S, Akdis M et al (2001) Histamine upregulates Th1 and downregulates Th2 responses due to different patterns of surface histamine 1 and 2 receptor expression. Int Arch Allergy Immunol 124:190–192

    PubMed  CAS  Google Scholar 

  • Koarai A, Ichinose M, Ishigaki-Suzuki S et al (2003) Disruption of L-histidine decarboxylase reduces airway eosinophilia but not hyperresponsiveness. Am J Respir Crit Care Med 167:758–763

    PubMed  Google Scholar 

  • Kuefner MA, Schwelberger HG, Weidenhiller M et al (2004) Both catabolic pathways of histamine via histamine-N-methyltransferase and diamine oxidase are diminished in the colonic mucosa of patients with food allergy. Inflamm Res 53:S31–S32

    PubMed  CAS  Google Scholar 

  • Lange P, Parner J, Vestbo J et al (1998) A 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 339:1194–1200

    PubMed  CAS  Google Scholar 

  • Lee LY, Lou YP, Hong JL et al (1995) Cigarette smoke-induced bronchoconstruction and release of tachykinins in guinea pig lungs. Resp Physiol 99:173–181

    CAS  Google Scholar 

  • Leuenberger P, Schwartz J, Ackermann-Liebrich U et al (1994) Passive smoking exposure in adults and chronic respiratory symptoms (SAPALDIA Study). Swiss study on air pollution and lung diseases in adults, SAPALDIA team. Am J Respir Crit Care Med 150:1222–1228

    PubMed  CAS  Google Scholar 

  • Lichtenstein LM, Gillespie E (1975) Effects of the H1 and H2 antihistamines on allergic histamine release and its inhibition by histamine. J Pharmacol Exp Ther 192:441–450

    PubMed  CAS  Google Scholar 

  • Lippert U, Artuc M, Grützkau A et al (2004) Human skin mast cells express H2 and H4, but not H3 receptors. J Invest Dermatol 123:116–123

    PubMed  CAS  Google Scholar 

  • Lippert U, Moller A, Welker P et al (2000) Inhibition of cytokine secretion from human leukemic mast cells and basophils by H1- and H2-receptor antagonists. Exp Dermatol 9:118–124

    PubMed  CAS  Google Scholar 

  • Liu MC, Bleecker ER, Lichtenstein LM et al (1990) Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Resp Dis 142:126–132

    PubMed  CAS  Google Scholar 

  • Lokke A, Lange P, Scharling H et al (2006) Developing COPD – a 25 years follow-up study of the general population. Thorax 61:935–939

    PubMed  CAS  Google Scholar 

  • MacGlashan D Jr (2003) Histamine: a mediator of inflammation. J Allergy Clin Immunol 112:S53–S59

    PubMed  CAS  Google Scholar 

  • Marieb E (2001) Human anatomy and physiology. Benjamin Cummings, San Francisco, p 414

    Google Scholar 

  • Mazzoni A, Young HA, Spitzer JH et al (2001) Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T-cell polarization. J Clin Invest 108:1865–1873

    PubMed  CAS  Google Scholar 

  • Mehlhop PD, van de Rijn M, Goldberg AB et al (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci USA 94:1344–1349

    PubMed  CAS  Google Scholar 

  • Morgan RK, McAllister B, Cross L et al (2007) Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and inhibits allergic asthma in a murine model. J Immunol 178:8081–8089

    PubMed  CAS  Google Scholar 

  • Morrow JD, Margolies GR, Rowland J et al (1991) 2nd evidence that histamine is the causative toxin of scombroid-fish poisoning. N Engl J Med 324:716–720

    PubMed  CAS  Google Scholar 

  • Nogami M, Suko M, Okudaira H et al (1990) Experimental pulmonary eosinophilia in mice by Ascaris suum extract. Am Rev Respir Dis 141:1289–1295

    PubMed  CAS  Google Scholar 

  • Nogrady SG, Bevan C (1978) Inhaled antihistamines-bronchodilatation and effects on histamine and methacholine-induced bronchoconstriction. Thorax 33:700–704

    PubMed  CAS  Google Scholar 

  • Nogrady SG, Hartley JPR, Handslip PJ et al (1978) Bronchodilatation following inhalation of the antihistamine clemastine. Thorax 33:479–482

    PubMed  CAS  Google Scholar 

  • O’Reilly M, Alpert R, Jenkinson S et al (2002) Identification of a histamine H4 receptor on human eosinophils – role in eosinophil chemotaxis. J Recept Signal Transduct Res 22:431–448

    PubMed  Google Scholar 

  • Ohtsu H (2008). Progress in allergy signal research on mast cells: the role of histamine in immunological and cardiovascular disease and the transporting system of histamine in the cell. J Pharmacol Sci 106:347–353

    PubMed  CAS  Google Scholar 

  • Oppenheimer EA, Rigatto M, Fletcher CM (1968) Airways obstruction before and after isoprenaline, histamine, and prednisolone in patients with chronic obstructive bronchitis. Lancet 1:552–557

    PubMed  CAS  Google Scholar 

  • Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147:S127–S35

    PubMed  CAS  Google Scholar 

  • Paul K (2008) Chronic obstructive pulmonary disease and emphysema. Retrieved-04-19. Retrieved April 24, 2008, from http://www.emedicine.com/med/topic857.htm

  • Popa VT (1977) An H1 blocker chlorpheniramine increase the tolerance to inhaled histamine and allergen in asthmatic subjects. Am Rev Respir Dis 115(Suppl)71.7

    Google Scholar 

  • Preuss CV, Wood TC, Szumlanski CL et al (1998) Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity. Mol Pharmacol 53:708–717

    PubMed  CAS  Google Scholar 

  • Ramsdale EH, Morris MM, Roberts RS et al (1984) Bronchial responsiveness to methacholine in chronic bronchitis: relationship to airflow obstruction and cold air responsiveness. Thorax 39:912–918

    PubMed  CAS  Google Scholar 

  • Ramsdell JW, Nachtwey FG, Moser KM (1982) Bronchial hyperreactivity in chronic obstructive bronchitis. Am Rev Respir Dis 126:829–832

    PubMed  CAS  Google Scholar 

  • Ranga V, Powers MA, Padilla M et al (1983) Effect of allergic bronchoconstriction on airways epithelial permeability to large polar solutes in the guinea pig. Am Rev Respir Dis 128:1065–1070

    PubMed  CAS  Google Scholar 

  • Rennard S (1997) Pathophysilogical mechanism of COPD. Eur Res Rev 7:206–210

    Google Scholar 

  • Rennard S, Vestbo J (2006) COPD: the dangerous underestimate of 15%. Lancet 367:1216–1219

    PubMed  Google Scholar 

  • Ryan G, Latimer KM, Dolovich J et al (1982) Bronchial responsiveness to histamine: relationship to diurnal variation of peak flow rate, improvement after bronchodilator, and airway calibre. Thorax 37:423–429

    PubMed  CAS  Google Scholar 

  • Saetta M, Timens W, Jeffery PK et al (1998) Management of chronic obstructive pulmonary disease. Eur Resp Monograph 7

    Google Scholar 

  • Schild HO, Hawkins DF, Mongar JL et al (1951) Reactions of isolated human asthmatic lung and bronchial tissue to a specific antigen. Lancet 2:376–382

    PubMed  CAS  Google Scholar 

  • Schneider E, Rolli-Derkinderen M, Arock M et al (2002) Trends in histamine research: new functions during immune responses and hematopoiesis. Trends Immunol 23:255–263

    PubMed  CAS  Google Scholar 

  • Shahid M, Tripathi T, Sobia1 F et al (2009) Histamine, Histamine Receptors, and their Role in Immunomodulation: An Updated Systematic Review. The Open Immunology Journal 2:9–41

    Google Scholar 

  • Simon RA, Stevenson DD, Arroyave CM et al (1977) The relationship of plasma histamine to the activity of bronchial asthma. J Allergy Clin Immunol 60:312–316

    PubMed  CAS  Google Scholar 

  • Smith CA, Harrison DJ (1997) Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 350:630–633

    PubMed  CAS  Google Scholar 

  • Soriano JB, Visick GT, Muellerova H et al (2005) Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest 128:2099–2107

    PubMed  Google Scholar 

  • Stick SM, Pulmonary physiology, airway responsiveness and asthma. MJA Vol 177 16 September 2002

    Google Scholar 

  • Sugata Y, Okano M, Fujiwara T et al (2007) Histamine H4 receptor agonists have more activities than H4 agonist in antigen-specific human T-cell responses. Immunology 121:266–275

    PubMed  CAS  Google Scholar 

  • Takeda K, Hamelmann E, Joetham A et al (1997) Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 186:449–454

    PubMed  CAS  Google Scholar 

  • Takeshita K, Sakai K, Bacon KB et al (2003) Critical role of histamine H4 receptor in leukotriene B4 production and mast cell dependent neutrophil recruitment induced by zymosan in vivo. J Pharmacol Exp Ther 307:1072–1078

    PubMed  CAS  Google Scholar 

  • Thomson NC, Chaudhuri R, Livingston E (2004) Asthma and cigarette smoking. Eur Resp 24:822–833

    CAS  Google Scholar 

  • Thurmond RL, Desai PJ, Dunford PJ et al (2004) A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J Pharmacol Exp Ther 309:404–413

    PubMed  CAS  Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Dis 7:41–53

    CAS  Google Scholar 

  • Triggiani M et al (2007) Differentiation of monocytes into macrophages induces the upregulation of histamine H1 receptor. J Allergy Clin Immunol 119:472–481

    PubMed  CAS  Google Scholar 

  • Triggiani M, Gentile M, Secondo A et al (2001) Histamine induces exocytosis and IL-6 production from human lung macrophages through interaction with H1 receptors. J Immunol 166:4083–4091

    PubMed  CAS  Google Scholar 

  • van der Pouw Kraan TC, Snijders A, Boeije LC et al (1998) Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J Clin Invest 102:1866–1873

    PubMed  Google Scholar 

  • Verma VK, Cockcroft DW, Dosman JA (1988) Airway responsiveness to inhaled histamine in chronic obstructive airways disease. Chronic bronchitis vs emphysema. Chest 94:457–461

    Google Scholar 

  • Wardlaw AJ, Dunnette S, Gleich GJ et al (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137:62–69

    PubMed  CAS  Google Scholar 

  • Wenzel SE, Fowler AA, Schwartz LB (1988) Activation of pulmonary mast cells by bronchoalveolar allergen challenge in vivo release of histamine and tryptase in atopic subjects with and without asthma. Am Rev Respir Dis 137:1002–1008

    PubMed  CAS  Google Scholar 

  • Yanni JM, Weimer LK, Sharif NA et al (1999) Inhibition of histamine-induced human conjunctival epithelial cell responses by ocular allergy drugs. Arch Opthalmol 117:643–647

    CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Council of Science and Technology, Uttar Pradesh, Lucknow, India (CST/SEPRD/D-3404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shukla, R.K., Jain, P., Bhattacharya, S. (2010). Biological Characteristics of Histamine Receptors in Airways Disease Management. In: Khardori, N., Khan, R., Tripathi, T. (eds) Biomedical Aspects of Histamine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9349-3_10

Download citation

Publish with us

Policies and ethics