Skip to main content

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 40))

  • 1244 Accesses

Abstract

An overview of applications of ground-based remote sensing is given. The first part concentrates on the vertical layering of the ABL and especially deals with the determination of mixing layer height. The second part presents various remote-sensing measurement results depicting vertical profiles of wind, turbulence, temperature, and humidity. The third part addresses turbulent fluxes and the last part regional-scale flow systems in the ABL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Sakka, H, Weill A, Le Gac C, Ney R, Chardenal L, Vinson J-P, Barthels L, Dupont E (2009) CURIE: a low power X-band, low atmospheric boundary layer Doppler radar. Meteorol Z 18:267–276

    Article  Google Scholar 

  • Anderson PS, Ladkin RS, Renfrew IA (2005) An autonomous Doppler sodar wind profiling system. J Atmos Oceanic Technol 22:1309–1325

    Article  Google Scholar 

  • Angevine WM, Avery SK, Ecklund WL, Carter DA (1993a) Fluxes of heat and momentum measured with a boundary layer wind profiler radar-radioacoustic sounding system. J Appl Meteor 32:73–80

    Article  Google Scholar 

  • Angevine WM, Avery SK, Kok JL (1993b) Virtual heat flux measurements from a boundary-layer profiler-RASS compared to aircraft measurements. J Appl Meteor 32:1901–1907

    Article  Google Scholar 

  • Angevine W, White AB, Avery SK (1994) Boundary layer depth and entrainment zone characterization with a boundary layer profiler. Bound-Layer Meteorol 68:375–385

    Article  Google Scholar 

  • Argentini S, Mastrantonio G (1994) Barrier winds recorded during two summer Antarctic campaigns and their interaction with the katabatic flows as observed by a tri-axial Doppler sodar. Int J Rem Sens 15:455–466

    Article  Google Scholar 

  • Asimakopoulos DN, Helmis CG, Michopoulos J (2004) Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height. Meteor Atmos Phys 85:85–92

    Article  Google Scholar 

  • Banakh VA, Smalikho IN (1997) Estimation of the turbulent energy dissipation rate from the pulsed Doppler lidar data. Atmos Oceanic Opt 10:957–965

    Google Scholar 

  • Bange J, Beyrich F, Engelbart DAM (2002) Airborne measurements of turbulent fluxes during LITFASS-98: Comparison with ground measurements and remote sensing in a case study. Theor Appl Climatol 73:35–51

    Article  Google Scholar 

  • Banta RM, Olivier LD, Levinson DH (1993) Evolution of the monteray bay sea-breeze layer as observed by pulsed Doppler lidar. J Atmos Sci 50:3959–3982

    Article  Google Scholar 

  • Banta RM, Olivier LD, Neff WD, Levinson DH, Ruffieux D (1995) Influence of canyon-induced flows on flow and dispersion over adjacent plains. Theor Appl Climatol 52:27–42

    Article  Google Scholar 

  • Banta RM, Olivier LD, Gudiksen PH, Lange R (1996) Implications of small-scale flow features to modeling dispersion over complex terrain. J Appl Meteor 35:330–342

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound-Layer Meteor 105:221–252

    Article  Google Scholar 

  • Banta RM, Darby LS, Fast JD, Pinto JO, Whiteman CD, Shaw WJ, Orr BD (2004) Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and implications to other flow features. J Appl Meteor 43:1348–1365

    Article  Google Scholar 

  • Banta RM, Pichugina YL, Brewer WA (2006) Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci 63:2700–2719

    Article  Google Scholar 

  • Behrendt A, Reichardt J (2000) Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl Optics 39:1372–1378

    Article  Google Scholar 

  • Beyrich F (1995) Mixing height estimation in the convective boundary layer using sodar data. Bound-Lay Meteorol 74:1–18

    Article  Google Scholar 

  • Beyrich F (1997) Mixing height estimation from sodar data – a critical discussion. Atmosph Environ 31:3941–3954

    Article  Google Scholar 

  • Beyrich F, Görsdorf U (1995) Composing the diurnal cycle of mixing height from simultaneous SODAR and wind profiler measurements. Bound-Layer Meteorol 76:387–394

    Article  Google Scholar 

  • Beyrich F, Kouznetsov RD, Leps J-P, Lüdi A, Meijninger WML, Weisensee U (2005) Structure parameters for temperature and humidity from simultaneous eddy-covariance and Scintillometer measurements. Meteorol Z 14:641–649

    Article  Google Scholar 

  • Bingöl F, Mann J, Foussekis D (2009) Conically scanning lidar error in complex terrain. Meteorol Z 18:189–195

    Article  Google Scholar 

  • Blumen W, Banta RM, Burns SP, Fritts DC, Newsom R, Poulos GS, Sun J (2001) Turbulence statistics of a Kelvin-Helmholtz billow event observed in the nighttime boundary layer during the CASES-99 field program. Dyn Atmos Oceans 34:189–204

    Article  Google Scholar 

  • Boers R, Spinhirne JD, Hart WD (1988) Lidar observations of the fine-scale variability of marine stratocumulus clouds. J Appl Meteorol 27:797–810

    Article  Google Scholar 

  • Bonner CS, Ashley MCB, Lawrence JS, Storey JWV, Luong-Van DM, Bradley SG (2008) Snodar: a new instrument to measure the height of the boundary layer on the Antarctic plateau. Proceedings of SPIE 7014: 70146I, p. 7, http://spie.org

    Google Scholar 

  • Bösenberg J, Linné H (2002) Laser remote sensing of the planetary boundary layer. Meteorol Z 11:233–240

    Article  Google Scholar 

  • Bromwich DH, Liu Z (1996) An observational study of the katabatic wind confluence zone near siple coast, West Antarctica. Mon Wea Rev 124:462–477

    Article  Google Scholar 

  • Brooks IM (2003) Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J Atmos Oceanic Technol 20:1092–1105

    Article  Google Scholar 

  • Browning KA, Wexler R (1968) The determination of kinematic properties of a wind field using Doppler radar. J Appl Meteorol 7:105–108

    Article  Google Scholar 

  • Caccia J-L, Guénard V, Benech B, Campistron B, Drobinski P (2004) Vertical velocity and turbulence aspects during mistral events as observed by UHF wind profilers. Annales Geophysicae 22:3927–3936

    Article  Google Scholar 

  • Campistron B, Huggins AW, LONG AB (1991) Investigations of a winter mountain storm in Utah. Part III: Single-Doppler radar measurements of turbulence. J Atmos Sci 48:1306–1318

    Article  Google Scholar 

  • Camy-Peyret C, Bergovist B, Galle B, Carleer M, Clerbaux C, Colin R, Fayt C, Goutail F, Nunes-Pinharanda M, Pommereau JP, Hausmann M, Platt U, Pundt I, Rudolph T, Hermans C, Simon PC, Vandaele AC, Plane JMC, Smith N (1996) Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy. J Atmos Chem 23:51–80

    Article  Google Scholar 

  • Carter DA, Gage KS, Ecklund WL, Angevine WM, Johnston PE, Riddle AC, Wilson J, Williams CR (1995) Developments in UHF lower tropospheric wind profiling at NOAA’s aeronomy laboratory. Radio Sci 30:977–1001

    Article  Google Scholar 

  • Clark TL, Hall WD, Banta RM (1994) Two- and three-dimensional simulations of the 9 January 1989 windstorm: Comparison with observations. J Atmos Sci 51:2317–2343

    Article  Google Scholar 

  • Cohn SA, Angevine WM (2000) Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J Appl Meteorol 39:1233–1247

    Article  Google Scholar 

  • Collier CG, Davies F, Bozier KE, Holt AR, Middleton DR, Pearson GN, Siemen S, Willets DV, Upton GJG, Young RI (2005) Dual-Doppler lidar measurements for improving dispersion models. Bull Amer Meteor Soc 86:825–838

    Article  Google Scholar 

  • Contini D, Cava D, Martano P, Donateo A, Grasso FM (2009) Comparison of indirect methods for the estimation of boundary layer height over flat-terrain in a coastal site. Meteorol Z 18:309–320

    Article  Google Scholar 

  • Cooney J (1972) Measurement of atmospheric temperature profiles by Raman backscatter. J Appl Meteorol 11:108–112

    Article  Google Scholar 

  • Crewell S, Mech M, Reinhardt T, Selbach C, Betz HD, Brocard E, Dick G, O'Connor E, Fischer J, Hanisch T, Hauf T, Hünerbein A, Delobbe L, Mathes A, Peters G, Wernli H, Wiegner M, Wulfmeyer V (2008) The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. Meteorol Z 17:849–866

    Article  Google Scholar 

  • Darby LS, Allwine KJ, Banta RM (2006) Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J Appl Meteor 45:740–753

    Article  Google Scholar 

  • Darby LS, Banta RM, Brewer WA, Neff WD, Marchbanks RD, McCarty BJ, Senff CJ, White AB, Angevine WM, Williams EJ (2002a) Vertical variations in O3 concentrations before and after a gust front passage. J Geophys Res 107:4321. doi: 10.1029/2001JD000996

    Article  Google Scholar 

  • Darby LS, Banta RM, Pielke Sr RA (2002b) Comparisons between mesoscale model terrain sensitivity studies and Doppler lidar measurements of the sea breeze at Monterey Bay. Mon Wea Rev 130:2813–2838

    Article  Google Scholar 

  • Darby LS, Neff WD, Banta RM (1999) Multiscale analysis of a meso-frontal passage in the complex terrain of the Colorado Front Range. Mon Wea Rev 127:2062–2081

    Article  Google Scholar 

  • Davis JC, Bozier KE, Collier CG, Davies F (2008) Spatial variations of sensible heat flux over an urban area. Meteor Appl 15:367–380

    Article  Google Scholar 

  • Davis JC, Collier CG, Davies F, Pearson GN, Burton R, Russell A (2009) Doppler lidar observations of sensible heat flux and intercomparisons with a ground-based energy balance station and WRF model output. Meteorol Z 18:155–162

    Article  Google Scholar 

  • Davis KJ, Gamage N, Hagelberg CR, Kiemle C, Lenschow DH, Sullivan PP (2000) An objective method for deriving atmospheric structure from airborne lidar observations. J Atmos Oceanic Technol 17:1455–1468

    Article  Google Scholar 

  • de Haij M, Wauben W, Klein Baltink H (2006) Determination of mixing layer height from ceilometer backscatter profiles. In: Slusser JR, Schäfer K, Comerón A (eds) Remote sensing of clouds and the atmosphere XI. Proceedings of SPIE Vol 6362: paper 63620R, http://spie.org

  • Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant and Soil 309:5–24

    Article  Google Scholar 

  • Derr VE, Little CG (1970) A comparison of remote sensing of the clear atmosphere by optical, radio, and acoustic radar techniques. Appl Opt 9:1976–1992

    Article  Google Scholar 

  • Devara PCS, Ernest Ray P, Murthy BS, Pandithurai G, Sharma S, Vernekar KG (1995) Intercomparison of nocturnal lower-atmospheric structure observed with LIDAR and SODAR Techniques at Pune, India. J Appl Meteorol 34:1375–1383

    Article  Google Scholar 

  • Drobinski P, Dabas AM, Haeberli C, Flamant PH (2001) On the small-scale dynamics of flow splitting in the Rhine Valley during a shallow foehn event. Bound-Lay Meteorol 99:277–296

    Article  Google Scholar 

  • Drobinski P, Dabas AM, Haeberli C, Flamant PH (2003a) Statistical characterization of the flow structure in the Rhine Valley. Bound-Lay Meteorol 106:483–505

    Article  Google Scholar 

  • Drobinski P, Haeberli C, Richard E, Lothon M, Dabas AM, Flamant PH, Furger M, Steinacker R (2003b) Scale interaction processes during MAP-IOP 12 South Foehn Event in the Rhine Valley. Quart J Roy Meteorol Soc 129:729–754

    Article  Google Scholar 

  • Drobinski P, Steinacker R, Richner H, Baumann-Stanzer K, Beffrey G, Benech B, Berger H, Chimani B, Dabas A, Dorninger M, Dürr B, Flamant C, Frioud M, Furger M, Gröhn I, Gubser S, Gutermann T, Häberli C, Häller-Scharnhost E, Jaubert G, Lothon M, Mitev V, Pechinger U, Piringer M, Ratheiser M, Ruffieux D, Seiz G, Spatzierer M, Tschannett S, Vogt S, Werner R, Zängl G (2007) Föhn in the Rhine Valley during MAP: A review of its multiscale dynamics in complex valley geometry. Quart J Roy Meteor Soc 133:897–916

    Article  Google Scholar 

  • Dupont E, Menut L, Carissimo B, Pelon J, Flamant P (1999) Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos Environ 33:979–994

    Article  Google Scholar 

  • Eberhard WL, Cupp RE, Healey KR (1989) Doppler lidar measurement of profiles of turbulence and momentum flux. J Atmos Oceanic Technol 6:809–819

    Article  Google Scholar 

  • Ecklund WL, Carter DA, Balsley BB (1988) A UHF Wind Profiler for the Boundary Layer: Brief Description and Initial Results. J Atmos Oceanic Technol 5:432–441

    Article  Google Scholar 

  • Edson JB, Zappa CJ, Ware JA, McGillis WR, Hare JE (2004) Scalar flux profile relationships over the open ocean. J Geophys Res 109, C08S09, doi:10.1029/2003JC001960

    Google Scholar 

  • Emeis S (1983) Development of a thunderstorm complex. Contr Phys Atmosph 56:399–404

    Google Scholar 

  • Emeis S (2001) Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol Z 10:141–149

    Article  Google Scholar 

  • Emeis S (2004) Parameterization of turbulent viscosity over orography. Meteorol Z 13:33–38

    Article  Google Scholar 

  • Emeis S (2008) Examples for the determination of turbulent (sub-synoptic) fluxes with inverse methods. Meteorol Z 17:3–11

    Article  Google Scholar 

  • Emeis S, Schäfer K (2006) Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound-Lay Meteorol 121:377–385

    Article  Google Scholar 

  • Emeis S, Türk M (2004) Frequency distributions of the mixing height over an urban area from SODAR data. Meteorol Z 13:361–367

    Article  Google Scholar 

  • Emeis S, Frank HP, Fiedler F (1995) Modification of air flow over an escarpment – results from the Hjardemaal experiment. Bound-Lay Meteorol 74:131–161

    Article  Google Scholar 

  • Emeis S, Münkel C, Vogt S, Müller WJ, Schäfer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38:273–286

    Article  Google Scholar 

  • Emeis S, Jahn C, Münkel C, Münsterer C, Schäfer K (2007a) Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. Meteorol Z 16:415–424

    Article  Google Scholar 

  • Emeis S, Baumann-Stanzer K, Piringer M, Kallistratova MA, Kouznetsov R, Yushkov V (2007b) Wind and turbulence in the urban boundary layer – analysis from acoustic remote sensing data and fit to analytical relations. Meteorol Z 16:393–406

    Article  Google Scholar 

  • Emeis S, Harris M, Banta RM (2007c) Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteorol Z 16:337–347

    Article  Google Scholar 

  • Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sensing of the mixing-layer height – a review. Meteorol Z 17:621–630

    Article  Google Scholar 

  • Emeis S, Schäfer K, Münkel C (2009) Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. Meteorol Z 18:149–154

    Article  Google Scholar 

  • Engelbart D (1998) Determination of boundary-layer parameters using wind profiler/RASS and sodar/RASS. Proceedings of the 9th ISARS, Vienna, 192–195

    Google Scholar 

  • Engelbart D (2005) Bodengebundene fernerkundung am meteorologischen observatorium lindenberg. Promet 31:134–147

    Google Scholar 

  • Engelbart DAM, Bange J (2002) Determination of boundary-layer parameters using wind profiler/RASS and sodar/RASS in the frame of the LITFASS project. Theor Appl Climatol 73:53–65

    Article  Google Scholar 

  • Engelbart D, Klein Baltink H (1997) Heat flux measurements by wind profiler/RASS – a comparison with tower data. Proc COST-76 Profiler Workshop, Engelberg, Switzerland, paper 7–10

    Google Scholar 

  • Engelbart D, Steinhagen H, Kallistratova M (2002) LINEX-2000: Assessment of different methods for determination of reference flux profiles. Proceedings of the 11th ISARS, Rome, 339–342

    Google Scholar 

  • Engelbart DAM, Kallistratova MA, Kouznetsov R (2007) Determination of the turbulent fluxes of heat and momentum in the ABL by ground-based remote sensing techniques (a Review). Meteorol Z 16:325–335

    Article  Google Scholar 

  • Eresmaa N, Karppinen A, Joffre SM, Räsänen J, Talvitie H(2006) Mixing height determination by ceilometer. Atmos Chem Phys 6:1485–1493 available from http://www.atmos-chem-phys.net/6/1485/2006/

    Article  Google Scholar 

  • Feltz WF, Smith WL, Howell HB, Knuteson RO, Woolf H, Revercomb HE (2003) Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J Appl Meteorol 42:584–597

    Article  Google Scholar 

  • Flamant C, Pelon J, Flamant PH, Durand P (1997) Lidar determination of the entrainement zone thickness at the top of the unstable marin atmospheric boundary-layer. Bound-Layer Meteorol 83:247–284

    Article  Google Scholar 

  • Flamant C, Drobinski P, Nance L, Banta R, Darby L, Dusek J, Hardesty M, Pelon J, Richard E (2002) Gap flow in an Alpine valley during a shallow south foehn event: Observations, numerical simulations and hydraulic analog. Quart J Roy Meteor Soc 128:1173–1210

    Article  Google Scholar 

  • Flores E, Schäfer K, Black J, Harig R, Jahn C (2007) Remote sensing of aircraft exhaust temperature and composition by passive Fourier Transform Infrared (FTIR). Proceedings of SPIE 6745:67451Q, http://spie.org

    Article  Google Scholar 

  • Frehlich R, Cornman L (2002) Estimating spatial velocity statistics with coherent Doppler lidar. J Atmos Oceanic Technol 19:355–366

    Article  Google Scholar 

  • Frioud M, Mitev V, Matthey R, Richner H, Furger M, Gubser S (2004) Variation of the aerosol stratification over the Rhine valley during föhn development: a backscatter lidar study. Meteorol Z 13:175–181

    Article  Google Scholar 

  • Fritts DC, Nappo C, Riggin DM, Balsley BB, Eichinger WE, Newsom RK (2003) Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99. J Atmos Sci 60:2450–2472

    Article  Google Scholar 

  • Gal-Chen T, Mei X, Eberhard WL (1992) Estimation of atmospheric boundary layer fluxes and other turbulence parameters from Doppler LIDAR data. J Geophys Res 97:18409–18423

    Article  Google Scholar 

  • Giez A, Ehret G, Schwiezow RL, Davis KJ, Lenschow DH (1999) Water vapor flux measurements from ground-based vertically pointed water vapor differential absorption and Doppler lidars. J Atmos Oceanic Technol 16:237–250

    Article  Google Scholar 

  • Grimsdell AW, Angevine WM (1998) Convective boundary layer height measurement with wind profilers and comparison to cloud base. J Atmos Oceanic Technol 15:1331–1338

    Article  Google Scholar 

  • Grund CJ, Banta RM, George JL, Howell JN, Post MJ, Richter RA, Weickmann AM (2001) High-resolution Doppler lidar for boundary layer and cloud research. J Atmos Oceanic Technol 18:376–393

    Article  Google Scholar 

  • Hair JW, Caldwell LM, Krueger DA, She CY (2001) High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Appl Optics 40:5280–5294

    Article  Google Scholar 

  • Hayden KL, Anlauf KG, Hoff RM, Strapp JW, Bottenheim JW, Wiebe HA, Froude FA, Martin JB, Steyn DG, McKendry IG (1997) The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser valley during Pacific ’93. J Atmos Environ 31:2089–2105

    Article  Google Scholar 

  • Helmis CG (2007) An experimental case study of the mean and turbulent characteristics of the vertical structure of the atmospheric boundary layer over the sea. Meteorol Z 16:375–381

    Article  Google Scholar 

  • Helmis CG, Wang Q, Halios CH, Wang S, Sgouros G (2004) On the vertical turbulent structure of the marine atmospheric boundary layer. Sixteenth Symposium on Boundary Layers, Portland, paper 11.1

    Google Scholar 

  • Hennemuth B, Kirtzel H-J (2008) Towards operational determination of boundary layer height using sodar/RASS soundings and surface heat flux data. Meteorol Z 17:283–296

    Article  Google Scholar 

  • Hirsch L, Peters G (1998) Abilities and limitation of a radar-RASS wind profiler for the measurement of momentum flux in the planetary boundary layer. Meteorol Z NF 7:336–344

    Google Scholar 

  • Hooper WP, Eloranta E (1986) Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon. J Clim Appl Meteorol 25:990–1001

    Article  Google Scholar 

  • Intrieri JM, Bedard AJ Jr, Hardesty RM (1990) Details of colliding thunderstorm outflows as observed by Doppler lidar. J Atmos Sci 47:1081–1098

    Article  Google Scholar 

  • Kallistratova MA, Kouznetsov RD, Kuznetsov DD, Kuznetsova IN, Nakhaev M, Chirokova G (2009) Summertime low-level jet characteristics measured by sodar over rural and urban areas. Meteorol Z 18:289–295

    Article  Google Scholar 

  • Kelley N, Shirazi M, Jager D, Wilde S, Adams J, Buhl M, Sullivan P, Patton E (2004) Lamar low-level jet project interim report. NREL/TP-500-34593. Golden, CO, National Renewable Energy Laboratory, p. 216

    Book  Google Scholar 

  • Kelley ND, Jonkman BJ, Scott GN, Bialasiewicz JT, Redmond LS (2005) The impact of coherent turbulence on wind turbine aeroelastic response and its simulation. Windpower, 15–18 May 2005, Denver, Colorado and NREL Report NREL/CP-500-38074. Golden, CO, National Renewable Energy Laboratory

    Google Scholar 

  • Kindler D, Oldroyd A, MacAskill A, Finch D (2007) An eight month test of the Qinetiq ZephIR system: Preliminary results. Meteorol Z 16:479–489

    Article  Google Scholar 

  • Kleissl J, Gomez J, Hong S-H, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture Scintillometer intercomparison study. Bound-Lay Meteorol 128:133–150

    Article  Google Scholar 

  • Kohsiek W (1982) Measuring CT2, Cq2 und CTq in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Bound-Lay Meteorol 24: 89–107

    Article  Google Scholar 

  • Kouznetsoc RD (2009) The summertime ABL structure over an Antarctic oasis with a vertical Doppler sodar. Meteorol Z 18:163–167

    Article  Google Scholar 

  • Kouznetsov RD, Kramar VF, Beyrich F, Engelbart D (2004) Sodar-based estimation of TKE and momentum flux profiles in the atmospheric boundary layer: Test of a parameterization model. Meteor Atmos Phys 85:93–99

    Article  Google Scholar 

  • Kouznetsov R, Kramar VF, Kallistratova MA (2007) The vertical structure of turbulent momentum flux in the lower part of the atmospheric boundary layer. Meteorol Z 16:367–373

    Article  Google Scholar 

  • Kropfli RA (1986) Single Doppler radar measurements of turbulence profiles in the convective boundary layer. J Atmos Oceanic Technol 3:305–313

    Article  Google Scholar 

  • Lammert A, Bösenberg J (2006) Determination of the convective boundary-layer height with laser remote sensing. Bound-Lay Meteorol 119:159–170

    Article  Google Scholar 

  • Lenschow DH, Wulfmeyer VO, Senff CJ (2000) Measuring second- through fourth-order moments in noisy data. J Atmos Oceanic Technol 17:1330–1347

    Article  Google Scholar 

  • Levinson DH (1998) Evaluation of Doppler lidar measurements of momentum flux and wind variability along an upwelling coast. NOAA Tech Memo ERL ETL-294, p. 105

    Google Scholar 

  • Levinson DH, Banta RM (1995) Observations of a terrain-forced mesoscale vortex and canyon drainage flows along the front range of the Colorado rockies. Mon Wea Rev 123:2029–2050

    Article  Google Scholar 

  • Linné H, Hennemuth B, Bösenberg J, Ertel K (2007) Water vapour flux profiles in the convective boundary layer. Theor Appl Climatol 87:201–211

    Article  Google Scholar 

  • Lippmann J, Bauer M, J, Peters J (1996) Methods of virtual heat flux determination from boundary later wind profiler/RASS measurements. Contr Phys Atmos 69:119–128

    Google Scholar 

  • Löhnert U, Turner DD, Crewell S (2009) Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J Appl Meteor Climatol 48:1017–1032

    Article  Google Scholar 

  • Lokoshchenko MA (2002) Long-term sodar observations in Moscow and a new approach to potential mixing determination by radiosonde Data. J Atmos Oceanic Technol 19:1151–1162

    Article  Google Scholar 

  • Lokoshchenko MA, Perepelkin VG, Semenova NV (2007) Standard deviation of the wind vertical component and its dynamics in Moscow by the sodar data Meteorol Z 16:407–414

    Article  Google Scholar 

  • Lokoshchenko MA, Yavlyaeva EA, Kirtzel H-J (2009) Sodar data about wind profiles in Moscow city. Meteorol Z 18:321–330

    Article  Google Scholar 

  • Lothon M, Lenschow DH, Mayor SD (2006) Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound-Lay Meteor 121:521–536

    Article  Google Scholar 

  • Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A, Brion J (1995) Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence. J Atmos Chem 21:263–273

    Article  Google Scholar 

  • Martner BE (1997) Vertical velocities in a thunderstorm gust front and outflow. J Appl Meteor 36:615–622

    Article  Google Scholar 

  • Martucci G, Srivastava MK, Mitev V, Matthey R, Frioud M, Richner H (2004) Comparison of lidar methods to determine the Aerosol Mixed Layer top. In: Schäfer K, Comeron A, Carleer M, Picard RH (eds), Remote sensing of clouds and the atmosphere VIII. Proceedings of SPIE 5235:447–456, http://spie.org

  • Mattis I, Ansmann A, Althausen D, Jaenisch V, Wandinger U, Müller D, Arshinov YF, Bobrovnikov SM, Serikov IB (2002) Relative-humidity profiling in the troposphere with a Raman lidar. Appl Opt 41:6451–6462

    Article  Google Scholar 

  • Maughan RA, Spanton AM, Williams ML (1982) An analysis of the frequency distribution of SODAR derived mixing heights classified by atmospheric stability. Atmos Environ 16:1209–1218

    Article  Google Scholar 

  • Meesters AGCA, Blink NJ, Henneken EAC, Vugts HF, Cannemeijer F (1997) Katabatic wind profiles over the Greenland ice sheet: observation and modelling. Bound-Lay Meteorol 85:475–496

    Article  Google Scholar 

  • Melfi SH, Spinhirne JD, Chou SH, Palm SP (1985) Lidar observation of the vertically organized convection in the planetary boundary layer over the ocean. J Clim Appl Meteorol 24:806–821

    Article  Google Scholar 

  • Melling H, List R (1980) Characteristics of vertical velocity fluctuations in a convective urban boundary layer. J Appl Meteorol 19:1184–1195

    Article  Google Scholar 

  • Menut L, Flamant C, Pelon J, Flamant PH (1999) Urban boundary-layer height determination from Lidar measurements over the Paris area. Appl Opt 38:945–954

    Article  Google Scholar 

  • Middleton DR, Davies F (2004) Evaluation of dispersion model parameters by dual Doppler lidar over west London, UK. 9th International Conference on Harmonization, paper 5.25

    Google Scholar 

  • Münkel C (2007) Mixing height determination with lidar ceilometers – results from Helsinki testbed. Meteorol Z 16:451–459

    Article  Google Scholar 

  • Münkel C, Räsänen J (2004) New optical concept for commercial lidar ceilometers scanning the boundary layer. Proceedings of SPIE Vol 5571:364–374, http://spie.org

    Article  Google Scholar 

  • Nedeljkovic D, Hauchecorne A, Chanin M-L (1993) Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km. IEEE Trans Geosci Remote Sens 31:90–101

    Article  Google Scholar 

  • Neff WD, Coulter RL (1986) Acoustic remote sensing. In: Lenschow DH (ed.) probing the atmospheric boundary layer. American Meteorological Society, Boston, MA, 201–239

    Google Scholar 

  • Newsom RK, Banta RM (2003) Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J Atmos Sci 30:16–33

    Article  Google Scholar 

  • Newsom RK, Ligon D, Calhoun RJ, Heap R, Cregan E, Princevac M (2005) Retrieval of microscale wind and temperature fields from single- and dual-Doppler lidar data. J Appl Meteor 44:1324–1345

    Article  Google Scholar 

  • Pekour MS, Kallistratova MA (1993) Sodar study of the boundary layer over Moscow for air pollution application. Appl Phys B 57:49–55

    Article  Google Scholar 

  • Pekour MS, Kallistratova MA, Lokoshchenko MA, Petenko IV (1993) Acoustic sounding study of the mixing layer over a city. In: Optical monitoring of the environment. Proceedings of SPIE 2107:169–193, http://spie.org

    Article  Google Scholar 

  • Peña A, Gryning S-E, Hasager CB (2009) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climatol 100:325–335

    Google Scholar 

  • Pérez IA, Sánchez ML, García MÁ, de Torre B (2009) Boundary layer structure and stability classification validated with CO2 concentrations over the Northern Spanish Plateau. Ann Geophys 27:339–349

    Article  Google Scholar 

  • Peters G, Kirtzel HJ(1994) Measurements of momentum flux in the boundary layer by RASS. J Atmos Ocean Technol 11:63–75

    Article  Google Scholar 

  • Peters G, Hinzpeter H, Baumann G (1985) Measurements of heat flux in the atmospheric boundary layer by sodar and RASS: a first attempt. Radio Sci 20:1555–1564

    Article  Google Scholar 

  • Peters G, Fischer B, Andersson T (2002) Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Env Res 7:353–362

    Google Scholar 

  • Peters G, Fischer B, Münster H, Clemens M, Wagner A (2005) Profiles of raindrop size distributions as retrieved by microrain radars. J Appl Meteorol 44:1930–1949

    Article  Google Scholar 

  • Philbrick CR (2002) Raman lidar descriptions of lower atmosphere processes. Proceedings of the 21st ILRC, Valcartier, Quebec Canada:535–545

    Google Scholar 

  • Philbrick CR, Mulik KR (2001) Application of Raman lidar to air quality measurements. Proceedings of SPIE 4035:22–33, http://spie.org

    Article  Google Scholar 

  • Pichugina YL, Banta RM, Kelley ND, Sandberg SP, Machol JL, Brewer WA (2004) Nocturnal low-level jet characteristics over southern Colorado. 16th Symposium on Boundary Layers and Turbulence, 9–13 August, 2004, Portland, Maine

    Google Scholar 

  • Pichugina YL, Banta RM, Kelley ND (2005a) Application of high-resolution Doppler lidar data for wind energy assessment. Paper 6.4 (CD), 2nd Symposium on Lidar Atmospheric Applications. 85th AMS Annual Meeting, 9–13 January 2005, San Diego, CA

    Google Scholar 

  • Pichugina YL, Banta RM, Brewer WA (2005b) Vertical profiles of velocity variances and TKE using Doppler-lidar scan data. 17th Symposium on Boundary Layers and Turbulance 22–26 May 2006 San Diego, paper 7.1

    Google Scholar 

  • Piironen AK, Eloranta EW (1995) Convective boundary layer depths and cloud geometrical properties obtained from volume imaging lidar data. J Geophys Res 100:25569–25576

    Article  Google Scholar 

  • Platt U, Heue K-P, Pöhler D (2009) Two- and three-dimensional observation of trace gas and aerosol distributions by DOAS Techniques. In: Kim YJ, Platt U, Gu MB, Iwahashi H (eds) Atmospheric and Biological environmental monitoring, 1. Springer Netherlands, 3–11

    Chapter  Google Scholar 

  • Pospichal B, Crewell S (2007) Boundary layer observations in west Africa using a novel microwave radiometer. Meteorol Z 16:513–523

    Article  Google Scholar 

  • Potvin G, Rogers RR (1999) Measuring vertical heat flux with RASS. Meteor Atmos Phys 71:91–103

    Article  Google Scholar 

  • Potvin G, Macpherson JI, Rogers RR, Donaldson NR, Strapp JW (1998) Analysis of heat flux by RASS and comparison with airplane measurements. Meteorol Z NF 7:262–270

    Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK , Sun J, Burns S, Nappo C, Banta RM, Newsom RK, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc 83:555–581

    Article  Google Scholar 

  • Puygrenier V, Bénech B, Campistron B, Lohou F, Said F, Brut A, Moppert C, Dupont E (2004) Determination of turbulent parameters in the atmospheric boundary layer with an UHF wind profiler. Comparison with in-situ measurements. 16th Symposium on Boundary Layers and Turbulance, Portland, paper 11.1

    Google Scholar 

  • Rabin RM, Doviak RJ, Sundara-Rajan A (1982) Doppler radar observations of momentum flux in a cloud-less convective layer with rolls. J Atmos Sci 39:851–863

    Article  Google Scholar 

  • Radlach M, Behrendt A, Wulfmeyer V (2008) Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields. Atmos Chem Phys 8:159–169

    Article  Google Scholar 

  • Reitebuch O, Straßburger A, Emeis S, Kuttler W (2000) Nocturnal secondary ozone concentration maxima analysed by SODAR observations and surface measurements. Atmos Environ 34: 4315–4329

    Article  Google Scholar 

  • Renfrew IA, Anderson PS (2006) Profiles of katabatic flow in summer and winter over Coats land, Antarctica. Quart J Roy Meteor Soc 132:779–802

    Article  Google Scholar 

  • Rose T, Crewell S, Löhnert U, Simmer C (2005) A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos Res 75:183–200

    Article  Google Scholar 

  • Ruffieux D, Nash J, Jeannet P, Agnew JL (2006) The COST 720 temperature, humidity, and cloud profiling campaign: TUC. Meteorol Z 15:5–10

    Article  Google Scholar 

  • Schäfer K, Haus R, Heland J, Haak A (1995) Measurements of atmospheric trace gases by emission and absorption spectroscopy with FTIR. Ber Bunsen Gesell 99:405–411

    Google Scholar 

  • Schäfer K, Emeis SM, Rauch A, Münkel C, Vogt S (2004) Determination of mixing-layer heights from ceilometer data. In: Schäfer K, Comeron AT, Carleer MR, Picard RH, Sifakis N (eds): Remote sensing of clouds and the atmosphere IX. Proceedings of SPIE 5571:248–259, http://spie.org

  • Schäfer K, Emeis S, Junkermann W, Münkel C (2005) Evaluation of mixing layer height monitoring by ceilometer with SODAR and microlight aircraft measurements. In: Schäfer K, Comeron AT, Slusser JR, Picard RH, Carleer MR, Sifakis N (eds): Remote sensing of clouds and the atmosphere X. Proceedings of SPIE 5979:59791I-1–59791I-11, http://spie.org

  • Schäfer K, Emeis S, Hoffmann H, Jahn C (2006a) Influence of mixing layer height upon air pollution in urban and sub-urban areas. Meteorol Z 15:647–658

    Article  Google Scholar 

  • Schäfer K, Hoffmann H, Emeis S, Wittig J, Vergeiner J (2006b) Highway emission study by DOAS within the Inn valley near Innsbruck. Proceedings of SPIE 6362: 63621D, http://spie.org

    Article  Google Scholar 

  • Schneider JM, Lilly DK (1999) An observational and numerical study of a sheared convective boundary layer. Part I: Phoenix II observations, statistical description, and visualization. J Atmos Sci 56:3059–3078

    Article  Google Scholar 

  • Schneider M, Hase F (2009) Ground-based FTIR water vapour profile analyses. Atmos Meas Tech 2:609–619

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027

    Article  Google Scholar 

  • Senff C, Bösenberg J, Peters G, Schaberl T (1996) Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: A case study. Contrib Atmos Phys 69:161–176

    Google Scholar 

  • Sicard M, Pérez C, Rocadenbosch F, Baldasano JM, García-Vizcaino D (2006) Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: Methods, results and limitations. Bound-Lay Meteorol 119:135–157

    Article  Google Scholar 

  • Skakalova TS, Savov PB, Grigorov IV, Kolev IN (2003) Lidar observation of breeze structure during the transition periods at the southern Bulgarian Black sea coast. Atmos Environ 37:299–311

    Article  Google Scholar 

  • Smalikho IN, Köpp F, Rahm S (2005) Measurement of atmospheric turbulence by 2-μm Doppler lidar. J Atmos Oceanic Technol 22:1733–1746

    Article  Google Scholar 

  • Spänkuch D, Döhler W, Güldner J, Keens A (1996) Ground-based passive atmospheric sounding by FTIR emission spectroscopy. First results with EISAR. Beitr Phys Atmos 69:97–111

    Google Scholar 

  • Steyn DG, Baldi M, Hoff RM (1999) The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J Atmos Ocean Technol 16:953–959

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Stutz J, Alicke B, Ackermann R, Geyer A, White A, Williams E (2004) Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000. J Geophys Res 109: D12306

    Article  Google Scholar 

  • Sun J, Burns SP, Lenschow DH, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Cuxart J, Blumen W, Lee X, Hu X-Z (2002) Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound-Lay Meteor 105:199–219

    Article  Google Scholar 

  • Sun J, Lenschow D, Burns S, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Balsley B, Jensen M, Mahrt L, Miller D, Skelly B (2004) Intermittent turbulence in stable boundary layers and the processes that generate it. Bound-Lay Meteor 110:255–279

    Article  Google Scholar 

  • Troen I, Petersen EL (1989) European Wind Atlas. Risø National Laboratory for the commission of the European communities, Roskilde, ISBN 87-550-1482-8, p. 656

    Google Scholar 

  • Uno I, Wakamatsu S, Ueda H, Nakamura A (1988) An observational study of the structure of the nocturnal urban boundary layer. Bound-Lay Meteor 45:59–82

    Article  Google Scholar 

  • Uno I, Wakamatsu S, Ueda H, Nakamura A (1992) Observed structure of the nocturnal urban boundary layer and its evolution into a convective mixed layer. Atmos Environ 26B:45–57

    Google Scholar 

  • Vaughan G, Wareing DP, Pepler SJ, Thomas L, Mitev VM (1993) Atmospheric temperature measurements made by rotational Raman scattering. Appl Optics 32:2758–2764

    Article  Google Scholar 

  • Vogt S, Engelbart D (2002) Heat flux measurements with a boundary-layer profiler and comparison with other instruments. Proceedings of the 11th ISARS, Rome;343–345

    Google Scholar 

  • Vogt S, Jaubert G (2004) Föhn in the Rhine valley as seen by a wind-profiler-RASS System and comparison with the non-hydrostatic model Meso-NH. Meteorol Z 13:165–174

    Article  Google Scholar 

  • Weissmann MD, Mayr GJ, Banta RM, Gohm A (2004) Observations of the temporal evolution and spatial structure of the gap flow in the Wipp valley on 2 and 3 October 1999. Mon Wea Rev 132:2684–2697

    Article  Google Scholar 

  • Wesely M (1976) The combined effect of temperature and humidity on the refractive index. J Appl Meteorol 15:43–49

    Article  Google Scholar 

  • Westwater ER, Han Y, Irisov VG, Leuskiy V, Kadygrov EN, Viazankin SA (1999) Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiments. J Atmos Oceanic Technol 16:805–818

    Article  Google Scholar 

  • White AB, Senff CJ, Banta RM (1999) A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar. J Atmos Oceanic Technol 16:584–590

    Article  Google Scholar 

  • Wilczak JM, Gossard EE, Neff WD, Eberhard WL (1996) Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. Bound-Lay Meteorol 78:321–349

    Article  Google Scholar 

  • Wulfmeyer V (1999) Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS. J Atmos Sci 56:1055–1076

    Article  Google Scholar 

  • Wulfmeyer V, Janjić T (2005) 24-h observations of the marine boundary layer using ship-borne NOAA high-resolution Doppler lidar. J Appl Meteorol 44:1723–1744

    Article  Google Scholar 

  • Wulfmeyer VO, Randall M, Brewer WA, Hardesty RM (2000) 2 μm Doppler lidar transmitter with high frequency stability and low chirp, Opt Lett 25:1228–1230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Emeis, S. (2011). Applications. In: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Atmospheric and Oceanographic Sciences Library, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9340-0_4

Download citation

Publish with us

Policies and ethics