Skip to main content

Analytical Description and Vertical Structure of the Atmospheric Boundary Layer

  • Chapter
  • First Online:
Surface-Based Remote Sensing of the Atmospheric Boundary Layer

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 40))

  • 1314 Accesses

Abstract

The chapter gives an overview of different types of atmospheric boundary layers (ABLs). These types are primarily coined by the characteristics of the underlying surfaces. The description starts with the basic vertical profile laws as a function of atmospheric stability over flat terrain. Then, the vertical structures of different ABLs over urban, forestal, marine, and mountainous terrain are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Arya SP (1995) Atmospheric boundary layer and its parameterization. In: Cermak JE et al. (eds) Wind Climate in Cities. Kluwer, Dordrecht, 41–66

    Google Scholar 

  • Atkinson BW (2003) Numerical modelling of urban heat-island intensity. Bound-Lay Meteorol 109:285–310

    Article  Google Scholar 

  • Banner ML, Peirson WL (1998) Tangential stress beneath wind-driven air-water surfaces. J Fluid Mech 364:115–145

    Article  Google Scholar 

  • Batchvarova E, Gryning E-E (2006) Progress in urban dispersion studies. Theor Appl Climatol 84:57–67

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux profile relationships in the atmospheric surface layer. J Atmos 28:181–189

    Article  Google Scholar 

  • CERC (2001) Cambridge Environmental Research Consultants, ADMS dispersion model, http://www.cerc.co.uk.

  • Charnock H (1955) Wind stress on a water surface. Quart J Roy Meteor Soc 81:639–640

    Article  Google Scholar 

  • Counihan J (1973) Simulation of an adiabatic urban boundary layer in a wind tunnel. Atmos Environ 7:673–689

    Article  Google Scholar 

  • Chow WTL, Roth M (2006) Temporal dynamics of the urban heat island of Singapore. Int J Climatol 26:2243–2260

    Article  Google Scholar 

  • Crutzen PJ (2004) New directions: The growing urban heat and pollution “island” effect – impact on chemistry and climate. Atmos Environ 38:3539–3540

    Article  Google Scholar 

  • Defant F (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch Meteorol Geophys Bioklimatol A 1:421–450

    Article  Google Scholar 

  • Donelan M (1990) Air-sea interaction. In: LeMehaute B, Hanes DM (eds) The Sea. Wiley-Interscience, Hoboken, NJ, 239–292

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relations. Bound-Lay Meteorol 1:363–372

    Article  Google Scholar 

  • Edson JB, Zappa CJ, Ware JA, McGillis WR, Hare JE (2004) Scalar flux profile relationships over the open ocean. J Geophys Res 109:C08S09. doi: 10.1029/2003JC001960

    Google Scholar 

  • Emeis S (2005) How well does a power law fit to a diabatic boundary-layer wind profile? DEWI Mag 26:59–62

    Google Scholar 

  • Emeis S, Türk M (2009) Wind-driven wave heights in the German Bight. Ocean Dyn 59:463–475

    Article  Google Scholar 

  • Emeis S, Baumann-Stanzer K, Piringer M, Kallistratova MA, Kouznetsov R, Yushkov V (2007) Wind and turbulence in the urban boundary layer – analysis from acoustic remote sensing data and fit to analytical relations. Meteorol Z 16:393–406

    Article  Google Scholar 

  • Etling D (2002) Theoretische meteorologie. Springer, Heidelberg etc., 354 pp.

    Google Scholar 

  • Farell C, Iyengar AKS (1999) Experiments on the wind tunnel simulation of atmospheric boundary layers. J Wind Eng Indust Aerodyn 79:11–35

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Finnigan JJ (2007) The turbulent wind in plant and forest canopies. In: Johnson EA, Miyanishi K (eds) Plant Disturbance Ecology. Academic Press, New york, 15–58

    Chapter  Google Scholar 

  • Foreman R, Emeis S (2010) Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J Phys Oceanogr, in print, DOI 10.1175/2010JPO4420.1

    Google Scholar 

  • Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22

    Article  Google Scholar 

  • Gryning S-E, Batchvarova E, Brümmer B, Jørgensen HE, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface layer. Bound-Lay Meteorol 124:251–268

    Article  Google Scholar 

  • Hara T, Belcher SE, Ginis I, Moon I-J (2004) Air-Sea Momentum Flux at High Winds. Meeting Amer Meteor Soc 2004, paper 2A.2, 2 pp (http://www.po.gso.uri.edu/Numerical/tropcyc/flux/amsmeet2004a.pdf)

  • Heimann D, De Franceschi M, Emeis S, Lercher P, Seibert P (eds) (2007) Air pollution, traffic noise and rekated health effects in the Alpine space – a guide for authorities and consulters. ALPNAP comprehensive report. Università degli Studi di Trento, Trento, 335 pp.

    Google Scholar 

  • Hidalgo J, Masson V, Baklanov A, Pigeon G, Gimeno L (2008) Advances in urban climate modeling. Ann NY Acad Sci 1146:354–374

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound-Lay Meteorol 42:55–78

    Article  Google Scholar 

  • Högström U, Bergström H, Smedman A-S, Halldin S, Lindroth A (1989) Turbulent exchange above a pine forest, I: Fluxes and gradients. Bound-Lay Meteorol 49:197–217

    Article  Google Scholar 

  • Jacobi C, Roth R (1995) Organisierte mesoskalige Störungen in der stabilen planetaren Grenzschicht. Meteorol Z NF 4:150–161

    Google Scholar 

  • Jones ISF, Toba Y (2001) Wind Stress over the Ocean. Cambridge University Press, Cambridge (UK)

    Book  Google Scholar 

  • Kanda M (2007) Progress in urban meteorology: A review. J Meteor Soc Jap 85B:363–383

    Article  Google Scholar 

  • Kraus H (2008) Grundlagen der Grenzschicht-Meteorologie. Springer, New York

    Google Scholar 

  • Lange M, Focken U (2006) Physical approach to short-term wind power prediction. Springer, Berlin, Heidelberg, etc., 208 pp.

    Google Scholar 

  • Lugauer M, Winkler P (2005) Thermal circulation in South Bavaria – climatology and synoptic aspects. Meteorol Z 14:15–30

    Article  Google Scholar 

  • Oost WA, Jacobs CMJ, van Oort C (2000) Stability effects on heat and moisture fluxes at sea. Bound-Lay Meteorol 95:271–302

    Article  Google Scholar 

  • Oost WA, Komen GJ, Jacobs CMJ, van Oort C (2002) New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound-Lay Meteorol 103:409–438

    Article  Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound-Lay Meteorol 11: 355–361

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Peña A, Gryning S-E, Hasager CB (2009) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climatol 100:325–335

    Google Scholar 

  • Piringer M, Joffre S, Baklanov A, Christen A, Deserti M, de Ridder K, Emeis S, Mestayer P, Tombrou M, Middleton D, Baumann-Stanzer K, Dandou A, Karppinen A, Burzynski J (2007) The surface energy balance and the mixing height in urban areas – activities and recommendations of COSTAction 715. Bound-Layer Meteor 124:3–24

    Article  Google Scholar 

  • Plate EJ (1995) Urban climates and urban climate modelling: An introduction. In: Cermak JE et al. (eds) Wind Climate in Cities. NATA ASI Series E277, Kluwer, Dordrecht, 23–39.

    Google Scholar 

  • Raupach MR (1979) Anomalies in flux-gradient relationships over forest. Bound-Lay Meteorol 16:467–486

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33:4001–4008

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Quart J Roy Meteor Soc 126:941–990

    Article  Google Scholar 

  • Schatzmann M, Leitl B (2002) Validation and application of obstacle-resolving urban dispersion models. Atmos Environ 36:4811–4821

    Article  Google Scholar 

  • Sempreviva A, Gryning S-E (1996) Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor. Bound-Lay Meteorol 77:331–352

    Article  Google Scholar 

  • Shreffler JH (1978) Detection of centripetal heat – Island circulations from tower data in St. Louis. Bound-Lay Meteorol 15:229–242

    Article  Google Scholar 

  • Shreffler JH (1979) Heat island convergence in St. Louis during calm periods. J Appl Meteorol 18:1512–1520

    Article  Google Scholar 

  • Smith RB (1978) The influence of mountains on the atmosphere. In: Landsberg HE, Saltzman B (eds) Advances in Geophysics 21:87–230

    Google Scholar 

  • Steinacker R (1984) Area-height distribution of a valley and its relation to the valley wind. Contr Atmos Phys 57:64–71

    Google Scholar 

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Sullivan PP, McWilliams JC (2010) Dynamics of winds and currents coupled to surface waves. Ann Rev Fluid Mech 42:19–42. doi: 10.1146/annurev-fluid-121108-145541

    Article  Google Scholar 

  • Velasco E, Márquez C, Bueno E, Bernabé RM, Sánchez A, Fentanes O, Wöhrnschimmel H, Cárdenas B, Kamilla A, Wakamatsu S, Molina LT (2007) Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos Chem Phys Discuss 7:12751–12779

    Article  Google Scholar 

  • Vergeiner I (1982) An energetic theory of slope winds. Meteorol Atmos Phys 19:189–191

    Google Scholar 

  • Vergeiner I, Dreiseitl E (1987) Valley winds and slope winds – observations and elementary thoughts. Meteorol Atmos Phys 36:264–286

    Article  Google Scholar 

  • Wieringa J (1973) Gust factors over open water and built-up country. Bound-Lay Meteorol 3:424–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Emeis, S. (2011). Analytical Description and Vertical Structure of the Atmospheric Boundary Layer. In: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Atmospheric and Oceanographic Sciences Library, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9340-0_2

Download citation

Publish with us

Policies and ethics