Skip to main content

Crop Pollination In Modern Agriculture

  • Chapter
  • First Online:
All Flesh Is Grass

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 16))

  • 1681 Accesses

Abstract

Approximately two thirds of all flowering plants are pollinated by insects. This “service” is not free. In return for pollen transfer, plants provide food for their partners in the form of nectar and pollen. Pollen is the nutritional source of protein, fatty acids, lipids sterols, vitamins and minerals (Todd and Bretherick, 1942) while carbohydrates, the basic source of energy, are supplied mostly by the nectar (Baker and Baker, 1983). Because each of the two parties can only barely survive, if at all, without the other, this is an exemplary case of mutualism. Associations from which both partners benefit are widespread, but that between angiosperms and insect pollinators is probably the most spectacular and large-scale example of mutualism in the living world (Schoonhoven et al., 1998). Animal-pollinated flowers advertise themselves by presenting various stimuli – visual, olfactory and tactile, simultaneously. The conspicuousness of the advertisement depends on the flowers’ color, size and shape, as well as the strength of their volatile emissions, and the perception of these traits by pollinators (Kevan, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afik, O. and Shafir, S. (2007) Effect of ambient temperature on crop loading in the honey bee, Apis mellifera (Hymenoptera: Apidae). Entomol. Gen. 29: 135–148.

    Google Scholar 

  • Al Mazra’awi, M.S., Shipp, J.L., Broadbent, A.B. and Kevan, P.G. (2006) Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control of tarnished plant bug (Hemiptera: Miridae) on canola. Environ. Entomol. 35: 1569–1577.

    Google Scholar 

  • Alpatov, V.V. (1948) Bee races and red clover pollination. Bee World 29: 61–63.

    Google Scholar 

  • Al-Tikrity, W.S., Benton, W.S., Risius, M.L. and Clarke, W.W. (1972) The effect of length of stay of honey bee colony in a crownvetch field on its foraging behaviour. J. Apic. Res. 11: 51–57.

    Google Scholar 

  • Ashman, T., Knight, T.M., Steets, J.A., Amarasekare, P., Burd, M., Campbell, D.R., Dudash, M.R., Johnston, M.O., Mazer, S.J., Mitchell, R.J., Morgan, M.T. and Wilson, W.G. (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85: 2408–2421.

    Google Scholar 

  • Baker, H.G. and Baker, I. (1983). A brief historical review of the chemistry of floral nectar, In: B. Bentley and T.S. Elias (eds.) The Biology of Nectaries. Columbia University Press, New York, pp. 127–152.

    Google Scholar 

  • Basualdo, M., Bedascarrasbure, E. and De Jong, D. (2000). Africanized honey bees (Hymenoptera: Apidae) have a greater fidelity to sunflowers than European bees. J. Econ. Entomol. 93: 304–307.

    PubMed  CAS  Google Scholar 

  • Basualdo, M., Rodriguez, E.M., Bedascarrasbure, E. and De Jong, D. (2007) Selection and estimation of the heritability of sunflower (Helianthus annuus) pollen collection behavior in Apis mellifera colonies. Genet. Mol. Res. 6: 374–381.

    PubMed  CAS  Google Scholar 

  • Batra, L.R., Batra, S.W.T. and Bohart, G.E. (1973). The mycoflora of domesticated and wild bees (Apoidea). Mycopathol. Mycol. Applicata 49: 13–44.

    Google Scholar 

  • Bell, M.C., Spooner-Hart, R.N. and Haigh, A.M. (2006) Pollination of greenhouse tomatoes by the Australian Bluebanded Bee Amegilla (Zonamegilla) holmesi (Hymenoptera: Apidae). J. Econ. Entomol. 99: 437–442.

    PubMed  CAS  Google Scholar 

  • Bohart, G.E. (1972) Management of wild bees for the pollination of crops. Annu. Rev. Entomol. 17: 287–312.

    Google Scholar 

  • Borneck, R. and Merle, B. (1989) Essaie d’une evaluation de l’incidence économique de l’abeille pollinisatrice dans l’agriculture europeénne. Apiacta 24: 33–38 [in French].

    Google Scholar 

  • Bosch, J. (1994) Improvement of field management of Osmia cornuta (Latreille) (Hymenoptera, Megachilidae) to pollinate almond. Apidologie 25: 71–83.

    Google Scholar 

  • Bosch, J. and Blas, M. (1994) Foraging behaviour and pollinating efficiency of Osmia cornuta and Apis mellifera on almond (Hymenoptera, Megachilidae and Apidae). Appl. Entomol. Zool. 29: 1–9.

    Google Scholar 

  • Bosch, J. and Kemp, W.P. (2001) How to manage the blue orchard bee as an orchard pollinator. Sustainable Agriculture Network Handbook Series, Book 5. National Agricultural Library, Beltsville, MD.

    Google Scholar 

  • Burgett, M. and Fisher, G.C. (1979) An evaluation of Beeline as a pollinator attractant on red clover. Am. Bee J. 119: 356–357.

    Google Scholar 

  • Butt, T.M., Carreck, N.L., Ibrahim, L. and Williams, I.H. (1998) Honey-bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci. Technol. 8: 533–538.

    Google Scholar 

  • Calderone, N.W. and Page, R.E. (1988) Genotypic variability in age polyethism and task specialization in the honey bee, Apis mellifera (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 22: 17–25.

    Google Scholar 

  • Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahrbach, S.E., Farris, S.M., Reynolds, D.R., Edwards, A.S., Martin, A.P., Robinson, G.E., Poppy, G.M. and Riley, J. (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403: 537–540.

    PubMed  CAS  Google Scholar 

  • Carreck, N. and Williams, I. (1998) The economic value of bees in the UK. Bee World 79: 115–123.

    Google Scholar 

  • Cauich, O., Javier, J.G., Quezada-Eua, N., Macias-Macias, J.O., Reyes-Oregel, V., Medina-Peralta, S. and Parra-Tabla, V. (2004) Behavior and pollination efficiency of Nannotrigona perilampoides (Hymenoptera: Meliponini) on greenhouse tomatoes (Lycopersicon esculentum) in subtropical Mexico. J. Econ. Entomol. 97: 457–481.

    Google Scholar 

  • Cornish, D.A., Voyle, M.D., Haine, H.M., Goodwin, R.M. and Vanneste, J.L. (1998) Distribution of beneficial bacteria on nashi and apple flowers using honey bees. Proceeding of the 51st New Zealand Plant Protection Conference, pp. 107–111.

    Google Scholar 

  • Croft, B.A. (1990) Arthropod Biological Agents and Pesticides. Wiley, New York.

    Google Scholar 

  • Dag, A. (2006) Interacciones entre polinizadores y plantas cultivadas bajo las condiciones especiales medioamientales de invernaderos, In: J.M. Guerra-Sanz, A. Roldan Serrano and A. Mena (eds.) Graneroeds. Sgundas jornadas de polinizacion en plantas horticolas. CIFA La Mojonera-La Canada IFAPA, Almeria, Spain, pp. 2–5 [in Spanish].

    Google Scholar 

  • Dag, A. (2008) Bee pollination of crop plants under environmental conditions unique to enclosures. J. Apic. Res. 47: 162–165.

    Google Scholar 

  • Dag, A. and Eisikowitch, D. (1995) The influence of hive location on honey bee foraging activity and fruit set in melon grown in plastic greenhouses. Apidologie 26: 511–519.

    Google Scholar 

  • Dag, A. and Eisikowitch, D. (1999) Ventilation of greenhouses increases honey bee foraging activity on melon. J. Apic. Res. 38: 169–175.

    Google Scholar 

  • Dag, A. and Eisikowitch, D. (2000) The effect of carbon dioxide enrichment on nectar production in melons under greenhouse conditions. J. Apic. Res. 39: 88–89.

    Google Scholar 

  • Dag, A. and Kammer, Y. (2001) Comparison between the effectiveness of honey bee (Apis mellifera) and bumblebee (Bombus terrestris) as pollinators of greenhouse sweet pepper (Capsicum annuum). Am. Bee J. 141: 447–448.

    Google Scholar 

  • Dag, A. and Regev, A. (1999) The economic value of honey bee’s pollination in Israel. Yalkut HaMichveret 42: 96–105 [in Hebrew].

    Google Scholar 

  • Dag, A., G’undia, M., Dotan, S., Abdul-Razek, A. and Stainberg, S. (1995) Strawberry pollination in greenhouses by honey bee and bumble bees. Gan Sade VaMeshek Aug 1995: 51–54 [in Hebrew].

    Google Scholar 

  • Dag, A., Fetscher, A.E., Afik, O., Yeselson, Y., Schaffer, A., Kammer, Y., Waser, N.M., Madore, M.A., Arpaia, M.L., Hofshi, R. and Shafir, S. (2003) Honeybee (Apis mellifera) strain differ in avocado (Persea Americana) nectar foraging preference. Apidologie 34: 299–309.

    Google Scholar 

  • Dag, A., Stern, R. and Shafir, S. (2005) Honey bee (Apis mellifera) strains differ in apple (Malus domestica) pollen foraging preference. J. Apic. Res. 44: 15–20.

    Google Scholar 

  • DeGrandi-Hoffman, G., Hoopingarner, R. and Baker, K.K. (1985) The influence of honey bee ‘Sideworking’ behaviour on cross-pollination and fruit set in apple. HortScience 20: 397–399.

    Google Scholar 

  • Delaplane, K.S. and Mayer, D.F. (2000) Crop Pollination by Bees. CABI, Cambridge.

    Google Scholar 

  • Del-Sarto, M.C., Peruquetti, R.C. and Campos, L.A. (2005) Evaluation of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera: Apidae). J. Econ. Entomol. 98: 260–266.

    PubMed  CAS  Google Scholar 

  • Desneux, N., Decourtye, A. and Delpuech, J.M. (2007) The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52: 81–106.

    CAS  Google Scholar 

  • Dhadialla, T.S. and Carlson, G.R. (1998). New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43: 545–569.

    PubMed  CAS  Google Scholar 

  • Free, J.B. (1965) Attempts to increase pollination by spraying crops with sugar syrup. J. Apic. Res. 4: 61–64.

    Google Scholar 

  • Free, J.B. (1993) Insect Pollination of Crops, Second Edition. Academic, London.

    Google Scholar 

  • Free, J.B., Free, N.W. and Jay, S.C. (1960) The effect on foraging behaviour of moving honey bee colonies to crops before or after flowering has begun. J. Econ. Entomol. 53: 564–565.

    Google Scholar 

  • Gary, N.E. and Witherell, P.C. (1977) Distribution of foraging bees of three honey bee stocks located near onion and safflower fields, Environ. Entomol. 6: 785–788.

    Google Scholar 

  • Gary, N.E., Witherell, P.C. and Lorenzen, K. (1978) The distribution and foraging activities of common Italian and “Hy-Queen” honey bees during Alfalfa pollination. Environ. Entomol. 7: 233–240.

    Google Scholar 

  • Girard, C., Picard-Nizou, A.L., Grallien, E., Zaccomer, B., Jouanin, L. and Pham-Delégue, M.H. (1998) Effects of proteinase inhibitor ingestion on survivel, learning abilities and digestive proteinases of the honeybee. Transgen. Res. 7: 239–246.

    CAS  Google Scholar 

  • Gordon, J. and Davis, L. (2003) Valuing Honeybee Pollination. RIRDC, Canberra, Australia.

    Google Scholar 

  • Gordon, D.M., Barthell, J.F., Page, R.E., Fondrk, M.K. and Thorp, R.W. (1995) Colony performance of selected honey bee (Hymenoptera: Apidae) strains used for alfalfa pollination. J. Econ. Entomol. 88: 51–57.

    Google Scholar 

  • Gross, H.R., Jamm, J.J. and Carpenter, J.E. (1994) Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Environ. Entomol. 23: 492–501.

    Google Scholar 

  • Gupta, P.R. and Chandel, R.S. (1995) Effects of diflubenzuron and penfluron on workers of Apis cerana indica F. and Apis mellifera L. Apidologie 26: 3–10.

    CAS  Google Scholar 

  • Harrison, M.D., Brewer, J.W. and Merrill, L.D. (1980) Insect involvement in the transmission of bacterial pathogens, In: K.F. Harris and K. Maramorosch (eds.) Vectors of Plant Pathogens. Academic, New York, pp. 293–324.

    Google Scholar 

  • Haynes, K.F. (1988) Sublethal effects of neurotoxic insecticides on insect behaviour. Annu. Rev. Entomol. 33: 149–168.

    PubMed  CAS  Google Scholar 

  • Heard, T.A. (1999) The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44: 183–206.

    PubMed  CAS  Google Scholar 

  • Hellmich, R.L., Kulincevic, J.M. and Ruthenbuhler, W.C. (1985) Selection for high and low pollen – hoarding honey bees, J. Hered. 76: 155–158.

    Google Scholar 

  • Hellmich, R.L., Siegfried, B.D., Sears, M.K., Stanley-Horn, D.E., Daniels, M.J., Mattila, H.R., Spencer, T., Bidne, K.G. and Lewis, L.C. (2001) Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proc. Natl. Acad. Sci. USA 98: 11925–11930.

    PubMed  CAS  Google Scholar 

  • Higo, H.A., Winston, M.L. and Selssor, K.N. (1995). Mechanism by which honey-bee (Hymenoptera, Apidae) queen pheromone sprays enhance pollination. Ann. Entomol. Soc. Am. 3: 366–373.

    Google Scholar 

  • Hogendoorn, K., Steen, Z. and Schwarz, M.P. (2000) Native Australian carpenter bee as a potential alternative to introduction bumble bees for tomato pollination in greenhouses. J. Apic. Res. 39: 67–74.

    Google Scholar 

  • Hogendoorn, K., Gross, C.L., Sedgley, M. and Keller, M.A. (2006) Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). J. Econ. Entomol. 99: 823–833.

    Google Scholar 

  • Humphry-Baker, P. (1975) Pollination and Fruit Set in Tree Fruits. British Columbia Department of Agriculture, Victoria, BC.

    Google Scholar 

  • James, C. (2005) Global Status of Commercialized Biotech/GM Crops: 2006. ISAAA Brief No. 35. International Service for Acquisition of Agric. Biotech Applications, Ithaca, NY.

    Google Scholar 

  • Jay, S.C. (1986) Spatial management of honeybees on crops. Ann. Rev. Entomol. 31: 49–65.

    Google Scholar 

  • Johnson, K.B., Stockwell, V.O., Burgett, D.M., Sugar, D. and Loper, J.E. (1993) Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms. Phytopathology 83: 478–484.

    Google Scholar 

  • Jörg, R., Bartsch, D., Bigler, F., Candolfi, M.P., Gielkens, M.M.C., Hartley, S.E., Hellmich, R.L., Huesing, J.E., Jepson, P.C., Layton, R., Quemada, H., Raybould, A., Rose, R.I., Schiemann, J., Sears, M.K, Shelton, A.M., Sweet, J., Vaituzis, Z. and Wolt, J.D. (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat. Biotech. 26: 203–208.

    Google Scholar 

  • Jouanin, L., Girard, C., Bonadé-Bottino, M., Le Metayer, M., Picard-Nizou, A., Lerin, J. and Pham-Delégue, M. (1998) Impact of oilseed rape expressing proteinase inhibitors on coleopteran pests and honeybees. Cahiers Agri. 7: 531–536.

    Google Scholar 

  • Kalev, H., Dag, A. and Shafir, S. (2002) Feeding pollen supplements to honey bee colonies during pollination of sweet pepper in enclosures. Am. Bee J. 142: 672–678.

    Google Scholar 

  • Kearns, C.A., Inouye, D.W. and Waser, N. (1998). Endangered mutualisms: the conservation of plant–pollinator interactions. Ann. Rev. Ecol. Syst. 29: 83–112.

    Google Scholar 

  • Kevan, P.G. (1988) Pollination: Crops and Bees. Pub. No. 72. Ontario Ministry of Agriculture and Food, Ontario, Canada.

    Google Scholar 

  • Kevan, P.G. (2005) Advertisement in flowers – Introduction, In: A. Dafni, P.G. Kevan and B.C. Husband (eds.) Practical Pollination Biology. Enviroquest Ltd. Ontario, Canada, p. 148.

    Google Scholar 

  • Kevan, P.G., Al-Mazra’awi, M.S., Sutton, J.C., Tam, L., Boland, G., Broadbent, B., Thompson, S.V. and Brewer, G.J. (2003) Using pollinators to deliver biological control agents against crop pests, In: R.A. Downer, J.C. Mueninghoff and G.C. Volgas (eds.) Pesticide Formulations and Delivery Systems: Meeting the Challenges of the Current Crop Protection Industry. American Society for Testing and Materials International, West Conshohocken, PA.

    Google Scholar 

  • Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. and Tscharntke, T. (2006) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 274: 303–313.

    Google Scholar 

  • Kovach, J., Petzoldt, R. and Harman, G.E. (2000) Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biol. Control 18: 235–242.

    Google Scholar 

  • Ladurner, E., Maccagnani, B., Santi, F. and Felicioli, A. (2000) Preliminary investigation on Osmia cornuta Latr. (Hymenoptera, Megachilidae) for controlled pollination in hybrid seed production of selected Brassicacae (red cabbage). Proc. Specialists’ Meeting on Insect Pollination in Greenhouses, Soesterberg, pp. 203–207.

    Google Scholar 

  • Losey, J.E., Rayor, L.S. and Carter, M.E. (1999) Transgenic pollen harms monarch larvae. Nature 399: 214.

    PubMed  CAS  Google Scholar 

  • Maccagnani, B., Mocioni, M., Gullino, M.L. and Ladurner, E. (1999) Application of Trichoderma harzianum by using Apis mellifera as a vector for the control of grey mould of strawberry: first results. IOBC Bull. 22: 161–164.

    Google Scholar 

  • Maccagnani, B., Ladurner, E., Santi, F. and Burgio, G. (2003) Osmia cornuta (Hymenoptera, Megachilidae) as a pollinator of pear (Pyrus communis): fruit- and seed-set. Apidologie 34: 204–216.

    Google Scholar 

  • Mackensen, O. and Nye, W.P. (1966) Selection and breeding of honeybees for collecting alfalfa pollen. J. Apic. Res. 12: 187–190.

    Google Scholar 

  • Malone, L.A. and Pham-Delégue, M.H. (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32: 278–304.

    Google Scholar 

  • Malone, L.A., Burgess, E.P.J., Stefanovic, D. and Gatehouse, H.S. (2000) Effects of four protease inhibitors on the survival of worker bumblebees, Bombus terrestris L. Apidologie 31: 25–38.

    CAS  Google Scholar 

  • Matthews, C. (1997) Fire blight – biological control under study. The Orchardist. Mar 1997: 16–19.

    Google Scholar 

  • Maumann, K., Winston, M.L., Selssor, K.N. and Smirle, M.J. (1994) Synthetic honey-bee (Hymenoptera, Apidae) queen mandibular gland pheromone applications affect pear and sweet cherry pollination. J. Econ. Entomol. 87: 1595–1599.

    Google Scholar 

  • Mayer, D.F. (1994) Sequential introduction of honey bee colonies for pear pollination. Acta Hort. 367: 267–269.

    Google Scholar 

  • Mayer, D. and Johansen, C.A. (1982) Field evaluation of chemical pollinator attractant on tree fruits. Am. Bee J. 129: 41–42.

    Google Scholar 

  • Mayer, D.F., Johansen, D.F. and Burgett, D.M. (1986) Bee Pollination of Tree Fruits. Washington State University, Pacific Northwest Cooperative Extension Bulletin. No. 0282.

    Google Scholar 

  • McGregor, S.E. (1976) Insect pollination of cultivated crop plants. USDA Agriculture Handbook No. 496: 93–98.

    Google Scholar 

  • Menzel, R. and Müller, U. (1996) Learning and memory in honeybees: from behavior to neural substates. Annu. Rev. Neurosci. 19: 379–404.

    PubMed  CAS  Google Scholar 

  • Michener, C.D. (2000) The Bees of the World. John Hopkins, Baltimore, MD.

    Google Scholar 

  • Milne, C.P. Jr. and Pries, K.J. (1986) Honeybees with larger corbiculae carry larger pollen pellets. J. Apic. Res. 25: 53–54.

    Google Scholar 

  • Milne, C.P. Jr., Hellmich, R.L. and Pries, K.J. (1986) Corbicular size in workers from honeybee lines selected for high or low pollen hoarding. J. Apic. Res. 25: 50–52.

    Google Scholar 

  • Morse, R.A. and Calderone, N.W. (2000) The value of honeybees as pollinators of U.S. crops in 2000. Bee Cult. 128: 1–15.

    Google Scholar 

  • Nye, W.P. and Mackensen, O. (1968) Selective breeding of honey bees for alfalfa pollination: fifth generation and backcross. J. Apic. Res. 7: 21–27.

    Google Scholar 

  • Nye, W.P. and Mackensen, O. (1970) Selective breeding of honey bees for alfalfa pollen collection: With tests in high and low alfalfa pollen collection regions. J. Apic. Res. 9: 61–64.

    Google Scholar 

  • Page, R.E. (1999) Commercial management of honey bees for pollination, In: 36th Apimondia Congress Proc., Vancouver, Canada, pp. 124–125.

    Google Scholar 

  • Palma, G., Quezada-Euán, J.J.G., Reyes-Oregel, V., Meléndez, V. and Moo-Valle, H. (2008) Production of greenhouse tomatoes (Lycopersicon esculentum) using Nannotrigona perilampoides, Bombus impatiens and mechanical vibration (Hym.: Apoidea). J. Appl. Entomol. 132: 79–85.

    Google Scholar 

  • Peng, G., Sutton, J.C. and Kevan, P.G. (1992) Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can. J. Plant Pathol. 14: 117–188.

    Google Scholar 

  • Peters, D.S. (1977) Systematik und Zoogeographie der west-paläarktischen Arten von Osmia sstr, Monosmia und Orientosmia. Senckenb. Biol. 58: 287–346 [in German].

    Google Scholar 

  • Picard-Nizou, A.L., Grison, R., Olsen, L., Pioche, C., Arnold, G. and Pham-Delégue, M.H. (1997) Impact of proteins used in plant genetic engineering: toxicity and behavioral study in the honeybee. J. Econ. Entomol. 90: 1710–1716.

    CAS  Google Scholar 

  • Pinzauti, M., Lazzarini, D. and Felicioli, A. (1997) Preliminary investigation of Osmia cornuta Latr. (Hymenoptera, egachilidae) as a potential pollinator for blackberry (Rubus fruticosus L.) under confined environment, Acta Hort. 437: 329–333.

    Google Scholar 

  • Rajotte, E.G. and Fell, R.D. (1982) A commercial bee attractant ineffective in enhancing apple pollination. HortScience 17: 230–231.

    Google Scholar 

  • Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A. and Pham-Delegue, M.H. (2008) Does CrylAb protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxic. Environ. 70: 327–333.

    CAS  Google Scholar 

  • Reynolds, D.R. and Riley, J.R. (2002) Remote-sensing, telemetric and computer-based technologies for investigating insct movement: a survey of existing and potential techniques. Comput. Electron. Agric. 35: 271–307.

    Google Scholar 

  • Richards, K.W. (1993) Non-Apis bees as crop pollinators. Rev. Suisse Zool. 100: 807–822.

    Google Scholar 

  • Rieth, J.P. and Levin, M.D. (1988) The repellent effect of two pyrethroid insecticides on the honey bee. Physiol. Entomol. 13: 213–218.

    CAS  Google Scholar 

  • Roberts, R.H. (1945) Blossom structure and setting of ‘Delicious’ and other apple varieties. Proc. Am. Soc. Hort. Sci. 46: 87–90.

    Google Scholar 

  • Robinson, W.S. and Fell, R.D. (1981) Effect of honey bee foraging behaviour on ‘Delicious’ apple set. HortScience 16: 326–328.

    Google Scholar 

  • Rose, R., Dively, G.P. and Pettis, J. (2007) Effects of Bt corn pollen on honey bees: emphasis on protocol development. Apidologie 38: 368–377.

    Google Scholar 

  • Roubik, D.W. (1995) Pollination of Cultivated Plants in the Tropics. Bulletin 118 of the Food and Agriculture Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Sadeh, A., Shmida, A. and Keasar, T. (2007) The Carpenter bee Xylocopa pubescens as an agricultural pollinator in greenhouses. Apidologie 38: 508–517.

    Google Scholar 

  • Sánchez, L.J., Slaa, E.J., Sandí, M. and Salazar, W. (2001) Use of stingless bees for commercial pollination in enclosures: a promise for the future. Acta Hort. 561: 219–224.

    Google Scholar 

  • Sandhu, D.K. and Waraich, M.K. (1985) Yeasts associated with pollinating bees and flower nectar. Microb. Ecol. 11: 51–58.

    Google Scholar 

  • Sapir, G., Goldway, M., Shafir, S. and Stern, R.A. (2007) Multiple introduction of honeybee colonies increase cross-pollination, fruit-set and yield of ‘Black Diamond’ Japanese plum (Prunus salicina Lindl.). J. Hort. Sci. Biotech. 82: 590–596.

    Google Scholar 

  • Schneider, D., Stern, R.A., Eisikowitch, D. and Goldway, M. (2002) The relationship between floral structure and honeybee pollination efficiency in Jonathan and Topred apple cultivars. J. Hort. Sci. Biotech. 77: 48–51.

    Google Scholar 

  • Schoonhoven, L.M., Jermy, T. and van Loon, J.J.A. (1998) Insect–Plant Biology, from Physiology to Evolution. Chapman & Hall, London.

    Google Scholar 

  • Schultheis, J.R., Ambrose, J.T., Bambara, S.B. and Mangum, W.A. (1994) Selective bee attractants did not improve cucumber and watermelon yield. HortScience 29: 155–158.

    Google Scholar 

  • Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M. and Elad, Y. (2006) Honey bee dispersal of the biological agent Trichderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur. J. Plant Pathol. 116: 119–128.

    CAS  Google Scholar 

  • Shimanuki, H., Lehner, T. and Stricker, M. (1967) Differential collection of cranberry pollen by honey bees. J. Econ. Entomol. 60: 1031–1033.

    Google Scholar 

  • Sommeijer, M.J. and Ruijter, A.D. (2000) Insect Pollination in Greenhouses. CIP-DATA Koninklijke Bibliotheek, The Hague, The Netherlands.

    Google Scholar 

  • Stern, R.A., Eisikowitch, D. and Dag, A. (2001) Sequential introduction of honeybee colonies and doubling their density increase cross-pollination, fruit set and yield in ‘Red Delicious’ apple. J. Hort. Sci. Biotech. 76: 17–23.

    Google Scholar 

  • Stern, R.A., Goldway, M., Zisovich, A.H. and Dag, A. (2004) Sequential introduction of honeybee colonies increases cross-pollination, fruit set and yield of Spadona pear (Pyrus communis). J. Hort. Sci. Biotech. 79: 652–658.

    Google Scholar 

  • Stern, R.A., Sapir, G., Shafir, S., Dag, A. and Goldway, M. (2007) The appropriate management of honey bee colonies for pollination of Rosacea fruit trees in warm climates. Middle Eastern and Russian J. Plant Sci. Biotech. 1: 13–19.

    Google Scholar 

  • Streit, S., Bock, F., Pirk, C.W.W. and Tautz, J. (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106: 169–171.

    PubMed  Google Scholar 

  • Sutton, J.C. (1995) Evaluating of micro-organisms for biocontrol: Botrytis cinerea and strawberry, a case study. Adv. Plant Pathol. 11: 73–190.

    Google Scholar 

  • Takeda, K. (1961) Classical conditioned response in the honey bee. J. Insect Physiol. 6: 168–179.

    CAS  Google Scholar 

  • Thompson, H.M. (2003) Behavioural effects of pesticides in bees: their potential for use in risk assessments. Ecotoxicology 12: 317–330.

    PubMed  CAS  Google Scholar 

  • Thomson, J.D. and Goodell, K. (2001) Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers. J. Appl. Ecol. 38: 1032–1044.

    Google Scholar 

  • Thomson, S.V., Hansen, D.R., Flint, K.M. and Vandenberg, J.D. (1992) Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees. Plant Dis. 76: 1052–1056.

    Google Scholar 

  • Todd, F.E. and Bretherick, O. (1942) The composition of pollen. J. Econ. Entomol. 35: 312–317.

    CAS  Google Scholar 

  • Torchio, P.F. (1987) Use of non-honey bee species as pollinators of crops. Proc. Entomol. Soc. Ont. 118: 111–124.

    Google Scholar 

  • Van Driesche, R.G. and Bellow, T.S. (1996) Biological Control. Chapman & Hall, New York.

    Google Scholar 

  • Vanneste, J.L. (1996) Honey bees and ephiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocontrol News Inf. 17: 67–78.

    Google Scholar 

  • Velthuis, H.H.W. and van Doorn, A. (2006) A century of advances in bumble bee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37: 421–451.

    Google Scholar 

  • Vicens, N. and Bosch, J. (2000a) Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ. Entomol. 29: 235–240.

    Google Scholar 

  • Vicens, N. and Bosch, J. (2000b) Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae). Environ. Entomol. 29: 413–420.

    Google Scholar 

  • Von Frisch, K. (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Waller, G. D., Vaissiere, B.E., Moffet, J.O. and Martin, J.H. (1985) Comparison of carpenter bees (Xylocopa varipuncta Patton) (Hymenoptera: Anthophoridae) and honey bees (Apis mellifera L.) as pollinators of male-sterile cotton in cages. J. Econ. Entomol. 78: 558–561.

    Google Scholar 

  • Watanabe, M.E. (1994) Pollination worries rise as honey bees decline. Science 265: 1170.

    PubMed  CAS  Google Scholar 

  • Weick, J. and Thorn, R.S. (2002) Effects of acute sublethal exposure to comaphos or diazinon on acquisition and discrimination of odour stimuli in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 95: 227–236.

    PubMed  CAS  Google Scholar 

  • Williams, I.H. (1994) The dependence of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 6: 229–257.

    Google Scholar 

  • Winston, M.L. and Slessor, K.N. (1993) Applications of queen honey bee mandibular pheromone for beekeeping and crop pollination. Bee World 74: 111–128.

    Google Scholar 

  • Yu, H. and Sutton, J.C. (1997) Effectiveness of bumblebees and honey bees for delivering inoculum of Gliocladium reseum to raspberry flowers to control Botrytis cinerea. Biol. Control 10: 113–122.

    Google Scholar 

  • Zangerl, A.R., McKenna, D., Wraight, C.L., Carroll, M., Ficarello, P., Warner, R. and Berenbaum, M.R. (2001) Effects of exposure to event 176 Bacillus thuringensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98: 11908–11912.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Dag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dag, A. (2010). Crop Pollination In Modern Agriculture. In: Dubinsky, Z., Seckbach, J. (eds) All Flesh Is Grass. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9316-5_7

Download citation

Publish with us

Policies and ethics