Skip to main content

Ecophysiological Look at Plant Carnivory

Why Are Plants Carnivorous?

  • Chapter
  • First Online:
Book cover All Flesh Is Grass

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 16))

Abstract

About 650 species of vascular carnivorous (Latin: carnis – flesh, vorare – to swallow) plants occur throughout the world (e.g., Rice, 2006) out of the total of about 300,000 species of vascular plants. Carnivorous plants belong to 15–18 genera of 8–9 botanical families and five orders (Givnish, 1989; Juniper et al., 1989; Müller et al., 2004; Heubl et al., 2006; Porembski and Barthlott, 2006; Studnička, 2006). Owing to many remarkable and striking morphological, anatomical, physiological, and ecological features, carnivorous plants have always attracted considerable interest of both researchers and gardeners. Nevertheless, the degree and extent of knowledge of the main disciplines studying this particular ecological functional plant group have always considerably lagged behind the study of noncarnivorous plants. However, similar to the dynamically growing knowledge of noncarnivorous plants, the study of carnivorous plants has developed very rapidly and progressively within the last decade, mainly due to the use of modern molecular taxonomic approaches. Also, modern ecophysiological research of carnivorous plants has progressed considerably within the last decade and has elucidated most of the particulars of carnivorous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec, L. (1997a) Mineral nutrition of carnivorous plants: A review. Bot. Rev. 63: 273–299.

    Google Scholar 

  • Adamec, L. (1997b) Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquat. Bot. 59, 297–306.

    CAS  Google Scholar 

  • Adamec, L. (1999) Seasonal growth dynamics and overwintering of the aquatic carnivorous plant Aldrovanda vesiculosa at experimental field sites. Folia Geobot. 34: 287–297.

    Google Scholar 

  • Adamec, L. (2000) Rootless aquatic plant Aldrovanda vesiculosa: Physiological polarity, mineral nutrition, and importance of carnivory. Biol. Plant. 43: 113–119.

    CAS  Google Scholar 

  • Adamec, L. (2002) Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytol. 155: 89–100.

    CAS  Google Scholar 

  • Adamec, L. (2005) Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation. Biol. Plant. 49: 247–255.

    Google Scholar 

  • Adamec, L. (2006) Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biol. 8: 765–769.

    PubMed  CAS  Google Scholar 

  • Adamec, L. (2007a) Investment in carnivory in Utricularia stygia and U. intermedia with dimorphic shoots. Preslia 79: 127–139.

    Google Scholar 

  • Adamec, L. (2007b) Oxygen concentrations inside the traps of the carnivorous plants Utricularia and Genlisea (Lentibulariaceae). Ann. Bot. 100: 849–856.

    PubMed  CAS  Google Scholar 

  • Adamec, L. (2008a) The influence of prey capture on photosynthetic rate in two aquatic carnivorous plant species. Aquat. Bot. 89: 66–70.

    Google Scholar 

  • Adamec, L. (2008b) Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory. Fund. Appl. Limnol. 171: 175–183.

    CAS  Google Scholar 

  • Adamec, L. (2008c) Soil fertilization enhances growth of the carnivorous plant Genlisea violacea. Biologia 63: 201–203.

    CAS  Google Scholar 

  • Adamec, L. (2009) Photosynthetic CO2 affinity of the aquatic carnivorous plant Utricularia australis (Lentibulariaceae) and its investment in carnivory. Ecol. Res. 24: 327–333.

    Google Scholar 

  • Adamec, L. and Kovářová, M. (2006) Field growth characteristics of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis. Folia Geobot. 41: 395–406.

    Google Scholar 

  • Adamec, L., Dušáková, K. and Jonáčková, M. (1992) Growth effects of mineral nutrients applied to the substrate or onto the leaves in four carnivorous plant species. Carniv. Plant Newslett. (Fullerton) 20/21: 18–24.

    Google Scholar 

  • Adamec, L., Kohout, P. and Beneš, K. (2006) Root anatomy of three carnivorous plant species. Carniv. Plant Newslett. (Fullerton) 35: 19–22.

    Google Scholar 

  • Adlassnig, W., Peroutka, M., Eder, G., Pois, W. and Lichtscheidl, I.K. (2006) Ecophysiological observations on Drosophyllum lusitanicum. Ecol. Res. 21: 255–262.

    Google Scholar 

  • Aerts, R., Verhoeven, J.T.A. and Whigham, D.F. (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80: 2170–2181.

    Google Scholar 

  • Aldenius, J., Carlsson, B. and Karlsson, S. (1983) Effects of insect trapping on growth and nutrient content of Pinguicula vulgaris L. in relation to the nutrient content of the substrate. New Phytol. 93: 53–59.

    Google Scholar 

  • Anderson, B. (2005) Adaptations to foliar absorption of faeces: A pathway in plant carnivory. Ann. Bot. 95: 757–761.

    PubMed  Google Scholar 

  • Anderson, B. and Midgley, J.J. (2003) Digestive mutualism, an alternate pathway in plant carnivory. Oikos 102: 221–224.

    Google Scholar 

  • Bern, A.L. (1997) Studies on nitrogen and phosphorus uptake by the carnivorous bladderwort Utricularia foliosa L. in south Florida wetlands. M.S. Thesis, Florida Int. Univ., Miami, FL, USA.

    Google Scholar 

  • Brewer, J.S. (1999a) Effects of competition, litter, and disturbance on an annual carnivorous plant (Utricularia juncea). Plant Ecol. 140: 159–165.

    Google Scholar 

  • Brewer, J.S. (1999b) Short-term effects of fire and competition on growth and plasticity of the yellow pitcher plant, Sarracenia alata (Sarraceniaceae). Am. J. Bot. 86: 1264–1271.

    PubMed  CAS  Google Scholar 

  • Butler, J.L., Gotelli, N.J. and Ellison, A.M. (2008) Linking the brown and the green: Transformation and fate of allochthonous nutrients in the Sarracenia microecosystem. Ecology 89: 898–904.

    PubMed  Google Scholar 

  • Chandler, G.E. and Anderson, J.W. (1976) Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit. New Phytol. 76: 129–141.

    CAS  Google Scholar 

  • Chapin, C.T. and Pastor, J. (1995) Nutrient limitations in the northern pitcher plant Sarracenia purpurea. Can. J. Bot. 73: 728–734.

    Google Scholar 

  • Colman, T.D. and Pedersen, O. (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: Gas films improve CO2 and O2 exchange. New Phytol. 177: 918–926.

    Google Scholar 

  • Crawford, R.M.M. (1989) Studies in plant survival, Studies in Ecology, Vol. 11. Blackwell Scientific, Oxford, pp. 105–204.

    Google Scholar 

  • Darwin, C. (1875) Insectivorous plants. Murray, London.

    Google Scholar 

  • Degreef, J.D. (1997) Fossil Aldrovanda. Carniv. Plant Newslett. (Fullerton) 26: 93–97.

    Google Scholar 

  • DeMott, W.R., Pape, B.J. and Tessier, A.J. (2004) Patterns and sources of variation in Daphnia phosphorus content in nature. Aquat. Ecol. 38: 433–440.

    CAS  Google Scholar 

  • Dixon, K.W., Pate, J.S. and Bailey, W.J. (1980) Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves. Aust. J. Bot. 28: 283–297.

    CAS  Google Scholar 

  • Dykyjová, D. (1979) Selective uptake of mineral ions and their concentration factors in aquatic higher plants. Folia Geobot. Phytotax. 14: 267–325.

    Google Scholar 

  • Ellis, A.G. and Midgley, J.J. (1996) A new plant–animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. Oecologia 106: 478–481.

    Google Scholar 

  • Ellison, A.M. (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol. 8: 740–747.

    PubMed  CAS  Google Scholar 

  • Ellison, A.M. and Farnsworth, E.J. (2005) The cost of carnivory for Darlingtonia californica (Sarraceniaceae): evidence from relationships among leaf traits. Am. J. Bot. 92: 1085–1093.

    PubMed  Google Scholar 

  • Ellison, A.M. and Gotelli, N.J. (2001) Evolutionary ecology of carnivorous plants. Trends Ecol. Evol. 16: 623–629.

    Google Scholar 

  • Ellison, A.M. and Gotelli, N.J. (2002) Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proc. Natl. Acad. Sci. USA 99: 4409–4412.

    PubMed  CAS  Google Scholar 

  • Ellison, A.M., Gotelli, N.J., Brewer, J.S., Cochran-Stafira, D.L., Kneitel, J.M., Miller, T.E., Worley, A.C. and Zamora, R. (2003) The evolutionary ecology of carnivorous plants. Adv. Ecol. Res. 33: 1–74.

    CAS  Google Scholar 

  • Englund, G. and Harms, S. (2003) Effects of light and microcrustacean prey on growth and investment in carnivory in Utricularia vulgaris. Freshw. Biol. 48: 786–794.

    Google Scholar 

  • Farnsworth, E.J. and Ellison, A.M. (2008) Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in ten carnivorous plant species. J. Ecol. 96: 213–221.

    Google Scholar 

  • Fertig, B. (2001) Importance of prey derived and absorbed nitrogen to new growth; preferential uptake of ammonia or nitrate for three species of Utricularia. Student report, Brandeis Univ., Waltham, MA, USA.

    Google Scholar 

  • Friday, L.E. (1989) Rapid turnover of traps in Utricularia vulgaris L. Oecologia 80: 272–277.

    Google Scholar 

  • Friday, L.E. (1992) Measuring investment in carnivory: seasonal and individual variation in trap number and biomass in Utricularia vulgaris L. New Phytol. 121: 439–445.

    Google Scholar 

  • Friday, L.E. and Quarmby, C. (1994) Uptake and translocation of prey-derived 15N and 32P in Utricularia vulgaris L. New Phytol. 126: 273–281.

    CAS  Google Scholar 

  • Givnish, TJ. (1989) Ecology and evolution of carnivorous plants, In: W.G. Abrahamson (ed.) Plant–Animal Interactions. McGraw-Hill, New York, pp. 243–290.

    Google Scholar 

  • Givnish, T.J., Burkhardt, E.L., Happel, R.E. and Weintraub, J.D. (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am. Nat. 124: 479–497.

    Google Scholar 

  • Gray, S.M., Miller, T.E., Mouquet, N. and Daufresne, T. (2006) Nutrient limitation in detritus-based microcosms in Sarracenia purpurea. Hydrobiologia 573: 173–181.

    CAS  Google Scholar 

  • Greilhuber, J., Borsch, T., Müller, K., Worberg, A., Porembski, S. and Barthlott, W. (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. 8: 770–777.

    PubMed  CAS  Google Scholar 

  • Guiral, D. and Rougier, C. (2007) Trap size and prey selection of two coexisting bladderwort (Utricularia) species in a pristine tropical pond (French Guiana) at different trophic levels. Int. J. Limnol. 43: 147–159.

    Google Scholar 

  • Guisande, C., Andrade, C., Granado-Lorencio, C., Duque, S.R. and Núñez-Avellaneda, M. (2000) Effects of zooplankton and conductivity on tropical Utricularia foliosa investment in carnivory. Aquat. Ecol. 34: 137–142.

    Google Scholar 

  • Guisande, C., Aranguren, N., Andrade-Sossa, C., Prat, N., Granado-Lorencio, C., Barrios, M.L., Bolivar, A., Núňez-Avellaneda, M. and Duque, S.R. (2004) Relative balance of the cost and benefit asociated with carnivory in the tropical Utricularia foliosa. Aquat. Bot. 80: 271–282.

    Google Scholar 

  • Guisande, C., Granado-Lorencio, C., Andrade-Sossa, C. and Duque, S.R. (2007) Bladderworts. Funct. Plant Sci. Biotechnol. 1: 58–68.

    Google Scholar 

  • Hanslin, H.M. and Karlsson, P.S. (1996) Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia 106: 370–375.

    Google Scholar 

  • Harms, S. (1999) Prey selection in three species of the carnivorous aquatic plant Utricularia (bladderwort). Arch. Hydrobiol. 146: 449–470.

    Google Scholar 

  • Heubl, G., Bringmann, G. and Meimberg, H. (2006) Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales – Revisited. Plant Biol. 8: 821–830.

    PubMed  CAS  Google Scholar 

  • Hoshi, Y., Shirakawa, J. and Hasebe, M. (2006) Nucleotide sequence variation was unexpectedly low in an endangered species, Aldrovanda vesiculosa L. (Droseraceae). Chromos. Bot. 1: 27–32.

    Google Scholar 

  • Jaffe, K., Michelangeli, F., Gonzalez, J.M., Miras, B. and Ruiz, M.C. (1992) Carnivory in pitcher plants of the genus Heliamphora (Sarraceniaceae). New. Phytol. 122: 733–744.

    Google Scholar 

  • Jobson, R.W., Morris, E.W. and Burgin, S. (2000) Carnivory and nitrogen supply affect the growth of the bladderwort Utricularia uliginosa. Aust. J. Bot. 48: 549–560.

    Google Scholar 

  • Jobson, R.W., Playford, J., Cameron, K.M. and Albert, V.A. (2003) Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 intron and trnL-F DNA sequences: Implications for character evolution and biogeography. Syst. Bot. 28: 157–171.

    Google Scholar 

  • Joel, D.M. (2002) Carnivory and parasitism in plants, In: K. Kondo (ed.) Proceedings of the 4th International Carnivorous Plant Conference, Tokyo, Japan. Hiroshima University, Japan, pp. 55–60.

    Google Scholar 

  • Juniper, B.E., Robins R.J. and Joel, D.M. (1989) The Carnivorous Plants. Academic, London, UK.

    Google Scholar 

  • Kamiński, R. (1987) Studies on the ecology of Aldrovanda vesiculosa L. II. Organic substances, physical and biotic factors and the growth and development of A. vesiculosa. Ekol. Pol. 35: 591–609.

    Google Scholar 

  • Karlsson, P.S. (1988) Seasonal patterns of nitrogen, phosphorus and potassium utilization by three Pinguicula species. Funct. Ecol. 2: 203–209.

    Google Scholar 

  • Karlsson, P.S. and Carlsson, B. (1984) Why does Pinguicula vulgaris L. trap insects? New Phytol. 97: 25–30.

    CAS  Google Scholar 

  • Karlsson, P.S. and Pate, J.S. (1992) Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorus economy of pygmy species of Drosera. Oecologia 92, 8–13.

    Google Scholar 

  • Karlsson, P.S., Nordell, K.O., Eirefelt, S. and Svensson, A. (1987) Trapping efficiency of three carnivorous Pinguicula species. Oecologia 73: 518–521.

    Google Scholar 

  • Karlsson, P.S., Nordell, K.O., Carlsson, B. and Svensson, B.M. (1991) The effect of soil nutrient status on prey utilization in four carnivorous plants. Oecologia 86: 1–7.

    Google Scholar 

  • Karlsson, P.S., Thorén, L.M. and Hanslin, H.M. (1994) Prey capture by three Pinguicula species in a subarctic environment. Oecologia 99: 188–193.

    Google Scholar 

  • Kibriya, S. and Jones, J.I. (2007) Nutrient availability and the carnivorous habit in Utricularia vulgaris. Freshw. Biol. 52: 500–509.

    CAS  Google Scholar 

  • Knight, S.E. (1988) The ecophysiological significance of carnivory in Utricularia vulgaris. Ph.D. Thesis, University of Wisconsin, USA.

    Google Scholar 

  • Knight, S.E. (1992) Costs of carnivory in the common bladderwort, Utricularia macrorhiza. Oecologia 89: 348–355.

    Google Scholar 

  • Knight, S.E. and Frost T.M. (1991) Bladder control in Utricularia macrorhiza: Lake-specific variation in plant investment in carnivory. Ecology 72: 728–734.

    Google Scholar 

  • Kosiba, P. (1992) Studies on the ecology of Utricularia vulgaris L. II. Physical, chemical and biotic factors and the growth of Utricularia vulgaris L. in cultures in vitro. Ekol. Pol. 40: 193–212.

    CAS  Google Scholar 

  • Laakkonen, L., Jobson, R.W. and Albert, V.A. (2006) A new model for the evolution of carnivory in the bladderwort plant (Utricularia): Adaptive changes in cytochrome c oxidase (COX) provide respiratory power. Plant Biol. 8: 758–764.

    PubMed  CAS  Google Scholar 

  • Li, H. (2005) Early Cretaceous sarraceniacean-like pitcher plants from China. Acta Bot. Gall. 152: 227–234.

    Google Scholar 

  • Lloyd, F.E. (1942) The Carnivorous Plants, Chronica Botanica, Vol. 9. Waltham, USA.

    Google Scholar 

  • Lüttge, U. (1983) Ecophysiology of Carnivorous Plants, In: O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler (eds.) Encyclopedia of Plant Physiology, New Series, Vol. 12C. Springer-Verlag, Berlin, Heidelberg, New York, pp. 489–517.

    Google Scholar 

  • Maberly, S.C. and Spence, D.H.N. (1983) Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.

    CAS  Google Scholar 

  • Maldonado San Martín, A.P., Adamec, L., Suda, J., Mes, T.H.M. and Štorchová, H. (2003) Genetic variation within the endangered species Aldrovanda vesiculosa (Droseraceae) as revealed by RAPD analysis. Aquat. Bot. 75: 159–172.

    Google Scholar 

  • Manjarrés-Hernández, A., Guisande, C., Torres, N.N., Valoyes-Valois, V., González-Bermúdez, A., Díaz-Olarte, J., Sanabria-Aranda, L. and Duque, S.R. (2006) Temporal and spatial change of the investment in carnivory of the tropical Utricularia foliosa. Aquat. Bot. 85: 212–218.

    Google Scholar 

  • Méndez, M. and Karlsson, P.S. (1999) Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment. Oikos 86: 105–112.

    Google Scholar 

  • Midgley, J.J. and Stock, W.D. (1998) Natural abundance of δ 15N confirms insectivorous habit of Roridula gorgonias despite it having no proteolytic enzymes. Ann. Bot. 82: 387–388.

    Google Scholar 

  • Müller, K., Borsch, T., Legendre, L., Porembski, S., Theisen, I. and Barthlott, W. (2004) Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol. 6: 477–490.

    PubMed  Google Scholar 

  • Müller, K.F., Borsch, T., Legendre, L., Porembski, S. and Barthlott, W. (2006) Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol. 8: 748–757.

    PubMed  Google Scholar 

  • Navrátilová, J. and Navrátil, J. (2005) Environmental factors of some endangered and rare plants in Třeboň’s mires. Czech. Zprávy Čes. Bot. Spol. (Prague) 40: 279–299.

    Google Scholar 

  • Nielsen, S.L. and Sand-Jensen, K (1991) Variation in growth rates of submerged rooted macrophytes. Aquat. Bot. 39: 109–120.

    Google Scholar 

  • Pagano, A.M. and Titus, J.E. (2004) Submersed macrophyte growth at low pH: Contrasting responses of three species to dissolved inorganic carbon enrichment and sediment type. Aquat. Bot. 79: 65–74.

    CAS  Google Scholar 

  • Pagano, A.M. and Titus, J.E. (2007) Submersed macrophyte growth at low pH: carbon source influences response to dissolved inorganic carbon enrichment. Freshw. Biol. 52: 2412–2420.

    Google Scholar 

  • Pavlovič, A., Masarovičová, E. and Hudák, J. (2007) Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. Ann Bot. 100: 527–536.

    PubMed  Google Scholar 

  • Płachno, B.J., Adamec, L., Lichtscheidl, I.K., Peroutka, M., Adlassnig, W. and Vrba, J. (2006) Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol. 8: 813–820.

    PubMed  Google Scholar 

  • Porembski, S. and Barthlott, W. (2006) Advances in carnivorous plants research. Plant Biol. 8: 737–739.

    PubMed  CAS  Google Scholar 

  • Porembski, S., Theisen, I. and Barthlott, W. (2006) Biomass allocation patterns in terrestrial, epiphytic and aquatic species of Utricularia (Lentibulariaceae). Flora 201: 477–482.

    Google Scholar 

  • Reichle, D.E., Shanks, M.H. and Crossley, D.A. (1969) Calcium, potassium and sodium content of forest floor arthropods. Ann. Entomol. Soc. Am. 62: 57–62.

    CAS  Google Scholar 

  • Rice, A.B. (2006) Growing Carnivorous Plants. Timber Press, Portland, USA.

    Google Scholar 

  • Richards, J.H. (2001) Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? Am. J. Bot. 88: 170–176.

    PubMed  Google Scholar 

  • Roberts, P.R. and Oosting, H.J. (1958) Responses of Venus fly trap (Dionaea muscipula) to factors involved in its endemism. Ecol. Monogr. 28: 193–218.

    Google Scholar 

  • Schwintzer, C.R. (1978) Vegetation and nutrient status of northern Michigan fens. Can. J. Bot. 56: 3044–3051.

    CAS  Google Scholar 

  • Shipley, B. 2006. Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with the relative growth rate? A meta-analysis. Funct. Ecol. 20: 565–574.

    Google Scholar 

  • Sirová, D., Adamec, L. and Vrba, J. (2003) Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytol. 159: 669–675.

    Google Scholar 

  • Sirová, D., Borovec, J., Černá, B., Rejmánková, E., Adamec, L. and Vrba, J. (2009) Microbial community development in the traps of aquatic Utricularia species. Aquat. Bot. 90: 129–136.

    Google Scholar 

  • Spomer, G.G. (1999) Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int. J. Plant Sci. 160: 98–101.

    Google Scholar 

  • Studnička, M. (1991) Interesting succulent features in the Pinguicula species from the Mexican evolutionary centre. Folia Geobot. Phytotax. 26: 459–462.

    Google Scholar 

  • Studnička, M. (2006) Masožravé rostliny – objekt badatelů, dobrodruhů a snílků, Academia, Prague, Czech Rep.

    Google Scholar 

  • Svensson, B.M. (1995) Competition between Sphagnum fuscum and Drosera rotundifolia: A case of ecosystem engineering. Oikos 74: 205–212.

    Google Scholar 

  • Sydenham, P.H. and Findlay, G.P. (1975) Transport of solutes and water by resetting bladders of Utricularia. Aust. J. Plant Physiol. 2: 335–351.

    Google Scholar 

  • Taylor, P. (1989) The Genus Utricularia: A Taxonomic Monograph. Kew Bulletin Additional Series XIV, HMSO, London, UK.

    Google Scholar 

  • Thum, M. (1988) The significance of carnivory for the fitness of Drosera in its natural habitat. 1. The reactions of Drosera intermedia and D. rotundifolia to supplementary feeding. Oecologia 75: 472–480.

    Google Scholar 

  • Thum, M. (1989a) The significance of opportunistic predators for the sympatric carnivorous plant species Drosera intermedia and Drosera rotundifolia. Oecologia 81: 397–400.

    Google Scholar 

  • Thum, M. (1989b) The significance of carnivory for the fitness of Drosera in its natural habitat. 2. The amount of captured prey and its effect on Drosera intermedia and Drosera rotundifolia. Oecologia 81: 401–411.

    Google Scholar 

  • Wærvågen, S.B., Rukked, N.A. and Hessen, D.O. (2002) Calcium content of crustacean zooplankton and its potential role in species distribution. Freshw. Biol. 47: 1866–1878.

    Google Scholar 

  • Wagner, G.M. and Mshigeni, K.E. (1986) The Utricularia-Cyanophyta association and its nitrogen-fixing capacity. Hydrobiologia 141: 255–261.

    CAS  Google Scholar 

  • Wakefield, A.E., Gotelli, N.J., Wittman, S.E. and Ellison, A.M. (2005) Prey addition alters nutrient stoichiometry of the carnivorous plant Sarracenia purpurea. Ecology 86: 1737–1743.

    Google Scholar 

  • Watson, A.P., Matthiessen J.N. and Springett, B.P. (1982) Arthropod associates and macronutrient status of the red-ink sundew (Drosera erythrorhiza Lindl.). Aust. J. Ecol. 7: 13–22.

    Google Scholar 

  • Wilson, S.D. (1985) The growth of Drosera intermedia in nutrient-rich habitats: The role of insectivory and interspecific competition. Can. J. Bot. 63: 2468–2469.

    Google Scholar 

  • Woods, H.A., Fagan, W.F., Elser, J.J. and Harrison, J.F. (2004) Allometric and phylogenetic variation in insect phosphorus content. Funct. Ecol. 18: 103–109.

    Google Scholar 

  • Zamora, R. (1999) Conditional outcomes of interactions: the pollinator-prey conflict of an insectivorous plant. Ecology 80: 786–795.

    Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Dr. Miloslav Studnička on the occasion of his 60th birthday, for his great merits on studying carnivorous plants and their popularization in the Czech Republic. This study was partly funded by the Research Programme of the Academy of Sciences of the Czech Republic # AV0Z 60050516. Thanks are due to Dr. Barry Rice for critically reading the manuscript and linguistic correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LubomÍr Adamec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Adamec, L. (2010). Ecophysiological Look at Plant Carnivory. In: Dubinsky, Z., Seckbach, J. (eds) All Flesh Is Grass. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9316-5_21

Download citation

Publish with us

Policies and ethics