Skip to main content

Fueled by Symbiosis, Foraminifera have Evolved to be Giant Complex Protists

  • Chapter
  • First Online:
All Flesh Is Grass

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 16))

Abstract

One may wonder in the framework of this book, and in context with the well-balanced chapter by Stambler, why foraminifera have been singled out to be the focus of a separate chapter. The answer is simple. Foraminifera are generally less well known, and they exemplify the power by which symbiosis can drive evolution of a predisposed and malleable group of organisms. As foraminifera are relatively small, when compared with corals and other invertebrates in the same semi- and tropical well-illuminated marine habitats, they are easily overlooked. At times, they form beaches of “living” and “star-sands” (Fig. 1e), and are so abundant that they can be scooped up with a spoon. Snorklers and SCUBA divers can see them as underwater “Christmas tree ornaments” on sea grasses or on macrophyte algae (Fig. 1c). Their tests are composed of CaCO3 and they fossilize well. Testimonial to their abundance in the Tethys Sea are the mountains of fossilized limestone formed from their tests (Fig. 1a, b, d) and quarried to build the Egyptian pyramids. Also intriguing is the fact that different types of algae have driven various lines of foraminifera to evolve tens to hundreds of times larger in size and considerably more complex than their ancestors. Modern larger foraminifera are the hosts for a greater variety of symbionts than any other marine group (Lee, 2006). With respect to symbiont type, there is some specificity. Those larger foraminifera that normally host diatoms have never been observed to host dinoflagellates. Similarly, those that host dinoflagellates never host diatoms, chlorophytes, or rhodophytes and so forth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, O.R. and Be, A.W.H. (1976) The ultrastructure of a planktonic foraminifer, ­Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates. J. Foramin. Res. 6: 1–21.

    Article  Google Scholar 

  • Baker, A.C. (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and ­biogeography of Symbiodinium. Annu. Rev. Ecol. Syst. 34: 661–689.

    Article  Google Scholar 

  • Carpenter, W.B. (1862) Introduction to the Study of Foraminifera. Hardwicke, London, pp. 1–319.

    Google Scholar 

  • Chai, J. and Lee, J.J. (1999a) Initial recognition of endosymbiotic diatoms by the larger foraminifer Amphistegina lobifera. Symbiosis 26: 39–53.

    Google Scholar 

  • Chai, J. and Lee, J.J. (1999b) Establishment and maintenance of endosymbiotic diatoms by the larger foraminifer Amphistegina lobifera, In: E. Wagner, J. Norman, H. Greppin, J.H.P. Hackstein, R.G. Herrmann, K.V. Kowalik, H.E.A. Schenk, and J. Seckbach, (eds.) Endocytobiology VII. Universities of Freiburg and Geneva, Germany, pp. 137–152.

    Google Scholar 

  • Chai, J. and Lee, J.J. (2000) Recognition, establishment and maintenance of diatom endosymbioses in foraminifera, In: J.J. Lee and P.H. Muller (eds.) Advances in the Biology of Foraminifera. Micropaleontology 46(Suppl 1): 182–195.

    Google Scholar 

  • Chang, S.S. and Trench, R.K. (1982) Peridinin-Chlorophyll a proteins from the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum Freudenthal. Proc. R. Soc. Lond. B 215: 191–210.

    Article  CAS  Google Scholar 

  • Correia, M.J. and Lee, J.J. (2000) Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis 29: 343–355.

    Google Scholar 

  • Correia, M.J. and Lee, J.J. (2002a) Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis 32: 15–26.

    Google Scholar 

  • Correia, M.J. and Lee, J.J. (2002b) How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis 32: 27–38.

    Google Scholar 

  • Doyle, W.L. and Doyle, M.M. (1940) The structure of zooxanthellae. Papers from Tortugas Laboratory 32: 129–142.

    Google Scholar 

  • Faber, W.W. and Lee, J.J. (1991) Histochemical evidence for digestion in Heterostegina depressa and Operculina ammonoides (Foraminifera). Endocytobiol. Cell Res. 8: 53–59.

    Google Scholar 

  • Faber, W.W., Anderson, O.R., Lindsey, J.L., and Carron, D.A. (1988) Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: I. Occurence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. J. Foramin. Res. 18: 334–343.

    Article  Google Scholar 

  • Faber, W.W., Anderson, O.R., and Carron, D.A. (1989) Algal foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: II. Effects of two symbiont species on foraminiferal growth and longevity. J. Foramin. Res. 19: 185–193.

    Article  Google Scholar 

  • Garcia-Cuetos, L., Pochon, X., and Pawlowski, J. (2005) Molecular evidence for host–symbiont specificity in soritid foraminifera. Protistology 156: 399–412.

    Article  CAS  Google Scholar 

  • Gastrich, M.D. (1988) Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. J. Phycol. 23: 623–632.

    Article  Google Scholar 

  • Hallock, P. (1985) Why are larger foraminifera large? Paleobiology 11: 195–208.

    Google Scholar 

  • Hallock, P., Forward, L.B., and Hansen, H.J. (1986) Environmental influence of test shape in Amphistegina. J. Foramin. Res. 16: 224–231.

    Article  Google Scholar 

  • Hawkins, E.K. and Lee, J.J. (1990) Fine structure of the cell surface of a cultured endosymbiotic strain of Porphyridium sp. (Rhodophyta). Trans. Am. Microsc. Soc. 109: 352–360.

    Article  Google Scholar 

  • Hawkins, E.K. and Lee, J.J. (2001) Architecture of the Golgi apparatus of a scale forming alga: ­Biogenesis and transport of scales. Protoplasma 216: 387–395.

    Article  Google Scholar 

  • Hawkins, E.K., Lee, J.J. and Correia, M. (2003) Polar localization of filamentous actin in cells of the scale-forming alga Pleurochrysis sp. Protoplasma 220: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Hofker, J. (1927) The foraminifera of the Siboga Expedition; Part 1. Monographs Siboga Expedition 1899–1900 (Leiden) 4: 1–78.

    Google Scholar 

  • Hottinger, L. (1978) Comparative anatomy of elementary shell structure in selected larger foraminifera, In: R. Hedley and C.G. Adams (eds.) Foraminifera Vol. 3. Academic, London, pp. 203–206.

    Google Scholar 

  • Hottinger, L. (1984) Foraminiféres de grande taile: Signification des structures complexes de la coquille. Benthos 83 : 2nd International Symposium on Benthic Foraminifera, Pau 1983. pp. 309–315. Pau et Bordeaux.

    Google Scholar 

  • Hottinger, L. (2000) Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure, In: J.J. Lee, and P.H Muller (eds.) Advances in the Biology of Foraminifera. Micropaleontology 46 (Suppl 1): 57–86.

    Google Scholar 

  • Hottinger, L. and Dreher, D. (1974) Differentiation of protoplasm in Nummulitidae (Foraminifera) from Elat, Red Sea. Mar. Biol. 25: 41–61.

    Article  Google Scholar 

  • Hottinger, L. and Leutenegger, S. (1980) The structure of calcarinid foraminifera. Schweizerische Palaontolgische Abhandlungen 101: 115–150.

    Google Scholar 

  • Hyams-Kaphzan O. and Lee, J.J. (2009) Cytological examination and location of symbionts in “living sands” – B aculogypsina. J. Foramin. Res. 38: 298–304.

    Article  Google Scholar 

  • Hyman, L. (1940) The Invertebrates: Protozoa through Ctenophora. McGraw-Hill, New York/London, pp. 44–45.

    Google Scholar 

  • Iglesias-Prieto, R., Matta, J.L., Robins, W.A. and Trench, R.K. (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. USA 89: 10302–10305.

    Article  CAS  Google Scholar 

  • Knight, R. and Mantoura, R.C.F. (1985) Chloroplast and Carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar. Ecol. Prog. Ser. 23: 241–249.

    Article  CAS  Google Scholar 

  • Kremer, B.P., Schmaljohann, R. and Röttger, R. (1980) Features and nutritional significance of ­photosynthates produced by unicellular algae symbiotic with larger foraminifera. Mar. Ecol. Prog. Ser. 2: 225–228.

    Article  CAS  Google Scholar 

  • Langer, M.R. and Lipps, J.H. (1995) Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium ) and their host foraminifera (Sorites): small subunit ribosomal RNA gene sequenceevidence. Mar. Micropaleontol. 26: 179–186.

    Article  Google Scholar 

  • Lee, J.J., Cevasco, M., Morales, J., Billick, M., G., Fine, M. and Levy, O. A new genus of symbiotic dinoflagellates, Symbiodinoides, from some soritid foraminifera and a new species, Symbiodinoides dubinskyi from the Heron-Wistori Channel, Great Barrier Reef, Australia. J. Eukar. ­Microbiol. (Submitted).

    Google Scholar 

  • Lee, J.J. (1990) Fine structure of the rhodophycean Porhyridium purpureum in situ in Peneroplis ­pertusus (Forskål) and P. acicularis (Batsch) and in axenic culture. J. Foramin. Res. 20: 162–169.

    Article  Google Scholar 

  • Lee, J.J. (2006) Symbiotic forms of life, In: J. Seckbach (ed.) Life As We Know It. Springer, Dordrecht, The Netherlands, pp. 307–324.

    Google Scholar 

  • Lee, J.J. and Bock, W.D. (1976) The importance of feeding in two species of sorited foraminifera with algal symbionts. Bull. Mar. Sci. 26: 530–537.

    Google Scholar 

  • Lee, J.J. and Correia, M. (2005) Endosymbiotic diatoms from previously unsampled habitats. ­Symbiosis 38: 251–260.

    CAS  Google Scholar 

  • Lee, J.J. and Hallock, P. (1987) Algal symbiosis as the driving force in the evolution of larger foraminifera. Ann. N.Y. Acad. Sci. 503: 330–347.

    Article  Google Scholar 

  • Lee, J.J. and Hallock, P.H. (eds.) (2000) Advances in the Biology of the Foraminifera . Micropaleontology 46 (Suppl), Micropaleontology Press, New York, pp. 368.

    Google Scholar 

  • Lee, J.J. and Lee, R.E. (1990) Chloroplast retention in elphids (foraminifera), In: P. Nardon, V. Gianinazzi-Pearson, A.R. Grenier, L. Margulis and D.C. Smith (eds.) Endocytobiology IV. Instite National de la Research Agronomique, INSA, Paris, France. pp. 215–220.

    Google Scholar 

  • Lee, J.J. and Reyes, D. (2006) Initial studies of dinoflagellate recognition in Soritinae. Symbiosis 42: 89–93.

    CAS  Google Scholar 

  • Lee, J.J. and Zucker, W. (1969) Algal flagellate symbiosis in the foraminifera Archaias angulatus. J. Protozool. 16: 71–81.

    Google Scholar 

  • Lee, J.J., Crockett, L.J., Hagen, J. and Stone, R. (1974) The taxonomic identity and physiological ecology of Chlamydomonas hedleyi sp. From the foraminifer Archaias angulatus. Br. Phycol. J. 9: 407–422.

    Article  Google Scholar 

  • Lee, J.J., McEnery, M.E., Kahn, E., and Schuster, F. (1979) Symbiosis and the evolution of larger foraminifera. Micropaleontology 25: 118–140.

    Article  Google Scholar 

  • Lee, M.J., Ellis, R., and Lee, J.J. (1982) A comparative study of photoadaptation in four diatoms isolated as endosymbionts from larger foraminifera. Mar. Biol. 68: 193–197.

    Article  Google Scholar 

  • Lee, J.J., McEnery, M.E., Koestler, R.L., Lee, M.J., Reidy, J., and Shilo, M. (1983) Experimental studies of symbiont persistence in Amphistegina lessoni, a diatom-bearing species of larger foraminifera from the Red Sea, In: H.E.A. Schenk, and W. Schwemmler (eds.) Endocytobiology II. Walter de Gruyter & Co., Berlin/New York, pp. 487–514.

    Google Scholar 

  • Lee, J.J., Saks, N.M., Kapiotou, F., Wilen, S.H., and Shilo, M. (1984) Effects of host cell extracts on cultures of endosymbiotic diatoms from larger foraminifera. Mar. Biol. 82: 113–120.

    Article  Google Scholar 

  • Lee, J.J., Erez, J., McEnery, M.E., Lagziel, A., and Xenophontos, X. (1986) Experiments on persistence of endosymbiotic diatoms in the larger foraminifer: Amphistegina lessonii. Symbiosis 1: 211–226.

    CAS  Google Scholar 

  • Lee, J., Lanners, E. and terKuile, B. (1988) The retention of chloroplasts by the foraminifer Elphidium crispum. Symbiosis 5: 45–60.

    CAS  Google Scholar 

  • Lee, J.J., Faber W.W., and Lee, R.E. (1991) Granular reticulopodal digestion – A possible preadaption to benthic foraminiferal symbiosis? Symbiosis 10: 47–51.

    Google Scholar 

  • Lee, J.J., Wray, C.G. and Lawrence, C. (1995) Could foraminiferal zooxanthellae be derived from environmental pools contributed to by different coelenterate hosts? Acta Protozool. 34: 75–85.

    CAS  Google Scholar 

  • Lee, J.J., Morales, J., Bacus, S., Diamont, A., Hallock, P., Pawlowski, J., and Thorpe, J. (1997) Progress in characterizing the endosymbiotic dinoflagellates of soritid foraminifera and related studies on some stages of the life cycle of Marginopora vertebralis. J. Foramin. Res. 27: 254–263.

    Article  Google Scholar 

  • Lee, J.J., Correia, M., Reimer, C.W., and Morales, J. (2001) A revised description of the Nitzschia frustulum var. symbiotica complex, the most common of the endosymbiotic diatoms in larger foraminifera, In: J.J. Lee and P.H. Muller (eds.) Advances in the Biology of Foraminifera. Micropaleontology 46(Suppl 1): 170–182.

    Google Scholar 

  • Lee, J.J., Fine, M., Levy, O. and Morales J. (2009) A note on asexual reproduction of a Marginopora sp from a deep collection in the Heron-Wistori Channel, Great Barrier Reef. J. Foramin. Res. 39: 4–7.

    Article  Google Scholar 

  • Leutenegger, S. (1977) Symbiosis between larger foraminifera and unicellular algae in the Gulf of Elat. Utrecht Micropaleontol. Bull. 1: 241–244.

    Google Scholar 

  • Leutenegger, S. (1984) Symbiosis in benthic foraminifera: specificity and host adaptation. J. Foramin. Res. 14: 16–35.

    Article  Google Scholar 

  • Leutenegger, S. and Hansen, H. (1979) Ultrastructural and radiotracer studies of pore-function in foraminifera. Mar. Biol. 5: 11–16.

    Article  Google Scholar 

  • Lipps, J.H. and Severin, K.P. (1986) Alveolina quoyi a living fusiform foraminifer at Motupore Island, Papua, New Guinea. Sci. New Guinea 11: 126–137.

    Google Scholar 

  • Lopez, R. (1979) Algal chloroplastsin the protoplasm of three species of benthic foraminifera: Taxonomic affinity, viability and persistence. Mar. Biol. 53: 201–211.

    Article  CAS  Google Scholar 

  • Müller-Merz, E. and Lee, J.J. (1976) Symbiosis in the larger foraminiferan Sorites marginales (with notes on Archaias spp). J. Protozool. 23: 390–396.

    Google Scholar 

  • Muscatine, L. (1967) Glycerol excretion by symbiotic algae from corals and Tridacna, and its control by the host. Science 156: 516–519.

    Google Scholar 

  • Newell, N.D. (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3: 103–124.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, J., Holzman, M., Fahrni, J., Pochon, X., and Lee, J.J. (2001) Molecular identification of algal endosymbionts in large miliolid foraminifers: 2. Dinoflagellates. J. Eukar. Microbiol. 48: 368–373.

    Article  PubMed  CAS  Google Scholar 

  • Pochon, X., Pawlowski, J., Zaninetti, L., and Rowan, R. (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol. 139: 1069–1078.

    Article  Google Scholar 

  • Pochon, X., LaJeunesse, T.C. and Pawlowski, J. (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar. Biol. 146: 17–27.

    Article  Google Scholar 

  • Pochon, X., Montoya-Burgos, J., Stadelman, B. and Pawlowski, J. (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol. Phylogenet. Evol. 38: 20–30.

    Article  CAS  Google Scholar 

  • Reichel, M. (1936) Etude sur les Alvéolines. Mémoires Suisses Paleontologie 57: 1–93.

    Google Scholar 

  • Reichel, M. (1937) Etude sur les Alvéolines. Mémoires Suisses Paleontologie 59: 95–147.

    Google Scholar 

  • Röttger, R. (1972) Die Kultur von Heterostigina depressa (Foraminifera, Numulitidae). Mar. Bio. 15: 150–159.

    Google Scholar 

  • Schoenberg, D.A. and Trench, R.K. (1980a) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. I Isoenzyme and soluble protein patterns of axenic culturesof S. microadriaticum. Proc. R. Soc. Lond. B 207: 405–427.

    Article  CAS  Google Scholar 

  • Schoenberg, D.A. and Trench, R.K. (1980b) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. II Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. B 207: 429–444.

    Article  Google Scholar 

  • Schoenberg, D.A. and Trench, R.K. (1980c) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. III Specificity and infectivity of S. microadriaticum. Proc. R. Soc. Lond. B 207: 445–460.

    Article  Google Scholar 

  • Spiro, H.J. (1987) Symbiosis in the planktonic foraminifer Orbulina universa and the isolation of its symbiotic dinoflagellate, Gymnodinium beii sp. nov. J. Phycol. 21: 307–317.

    Article  Google Scholar 

  • Sutton, D.C. and Hoegh-Guldberg, O. (1990) Host–zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of host extract on symbionts. Biol. Bull. 178: 175–186.

    Article  Google Scholar 

  • ter Kuile, B.H., Erez, J. and Lee, J.J. (1987) The role of feeding in the metabolism of larger symbiont bearing foraminifera. Symbiosis 4: 335–350.

    Google Scholar 

Download references

Acknowledgment

The study was supported by PSC-CUNY Awards # 61136-00-39 & 62897-00 40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, J.J. (2010). Fueled by Symbiosis, Foraminifera have Evolved to be Giant Complex Protists. In: Dubinsky, Z., Seckbach, J. (eds) All Flesh Is Grass. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9316-5_20

Download citation

Publish with us

Policies and ethics