Skip to main content

Actin-based Chromosome Movements in Cell Division

  • Chapter
  • First Online:
Actin-based Motility
  • 1039 Accesses

Abstract

Although microtubules are well-studied players moving chromosomes during mitosis and meiosis, recent work in mammalian oocytes has revealed intricate interactions between actin and chromosomes that directly control the positioning and extrusion of chromosomes during asymmetric meiotic cell divisions. New evidence also suggests that actin and actin-based motor proteins play interesting roles in the assembly and orientation of both meiotic and mitotic spindles. In this chapter we review what is known to date in this emerging area of actin-based motility and discuss outstanding questions and key mechanistic issues for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Schmidt G, Just I (2000) Rho GTPases as targets of bacterial protein toxins. Biol Chem 381: 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Albertini DF, Barrett SL (2004) The developmental origins of mammalian oocyte polarity. Semin Cell Dev Biol 15: 599–606.

    Article  PubMed  Google Scholar 

  • Asakura T, Sasaki T, Nagano F et al. (1998) Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 16: 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Athale CA, Dinarina A, Mora-Coral M et al. (2008) Regulation of microtubule dynamics by reaction cascades around chromosomes. Science 322: 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  • Azoury J, Lee KW, Georget V et al. (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18: 1514–1519.

    Article  PubMed  CAS  Google Scholar 

  • Barak LS, Nothnagel EA, DeMarco EF, Webb WW (1981) Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and fluorescent DNase: is actin involved in chromosomal movement? Proc Nat Acad Sci USA 78: 3034–3038.

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens P, Caudron M, Niethammer P, Karsenti E (2006) Gradients in the self-organization of the mitotic spindle. Trends Cell Biol 16: 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Bielak-Zmijewska A, Kolano A, Szczepanska K et al. (2008) Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos. Dev Biol 322: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Brunet S, Maro B (2005) Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130: 801–811.

    Article  PubMed  CAS  Google Scholar 

  • Burkel BM, von Dassow G, Bement WM (2007) Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil Cytoskeleton 64: 822–832.

    Article  PubMed  CAS  Google Scholar 

  • Capco DG, Gallicano GI, McGaughey RW et al. (1993) Cytoskeletal sheets of mammalian eggs and embryos: a lattice-like network of intermediate filaments. Cell Motil Cytoskeleton 24: 85–99.

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Pantaloni D (2007) Control of actin assembly dynamics in cell motility. J Biol Chem 282: 23005–23009.

    Article  PubMed  CAS  Google Scholar 

  • Caudron M, Bunt G, Bastiaens P, Karsenti E (2005) Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309: 1373–1376.

    Article  PubMed  CAS  Google Scholar 

  • Choi T, Fukasawa K, Zhou R et al. (1996) The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proc Nat Acad Sci USA 93: 7032–7035.

    Article  PubMed  CAS  Google Scholar 

  • Dancker P, Low I, Hasselbach W, Wieland T (1975) Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta 400: 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Deng M, Suraneni P, Schultz RM, Li R (2007) The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev Cell 12: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Deng M, Kishikawa H, Yanagimachi R et al. (2003) Chromatin-mediated cortical granule redistribution is responsible for the formation of the cortical granule-free domain in mouse eggs. Dev Biol 257: 166–176.

    Article  PubMed  CAS  Google Scholar 

  • Dinarina A, Pugieux C, Corral MM et al. (2009) Chromatin shapes the mitotic spindle. Cell 138: 502–513.

    Article  PubMed  CAS  Google Scholar 

  • Dumont J, Million K, Sunderland K et al. (2007a) Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev Biol 301: 254–265.

    Article  PubMed  CAS  Google Scholar 

  • Dumont J, Petri S, Pellegrin F et al. (2007b) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M, Pruyne D, Amberg DC et al. (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat cell biol 4: 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Fabian L, Forer A (2007) Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes. Protoplasma 231: 201–213.

    Article  PubMed  Google Scholar 

  • Forer A, Pickett-Heaps JD (1998) Cytochalasin D and latrunculin affect chromosome behaviour during meiosis in crane-fly spermatocytes. Chromosome Res 6: 533–549.

    Article  PubMed  CAS  Google Scholar 

  • Forer A, Jackson WT, Engberg A (1979) Actin in spindles of Haemanthus katherinae endosperm. II. Distribution of actin in chromosomal spindle fibres, determined by analysis of serial sections. J Cell Sci 37: 349–371.

    PubMed  CAS  Google Scholar 

  • Forer A, Spurck T, Pickett-Heaps JD (2007) Actin and myosin inhibitors block elongation of kinetochore fibre stubs in metaphase crane-fly spermatocytes. Protoplasma 232: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Galletta BJ, Cooper JA (2009) Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 21: 20–27.

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Cha BJ, Roeder AD (1995) F-actin is required for spindle anchoring and rotation in Xenopus oocytes: a re-examination of the effects of cytochalasin B on oocyte maturation. Zygote 3: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17: 351–386.

    Article  PubMed  CAS  Google Scholar 

  • Goodman B, Zheng Y (2006) Mitotic spindle morphogenesis: Ran on the microtubule cytoskeleton and beyond. Biochem Soc Trans 34: 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Halet G, Carroll J (2007) Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell 12: 309–317.

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Macara IG (2008) Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1. J Cell Biol 182: 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16: 319–330.

    PubMed  CAS  Google Scholar 

  • Heald R, Tournebize R, Blank T et al. (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts [see comments]. Nature 382: 420–425.

    Article  PubMed  CAS  Google Scholar 

  • Higgs HN (2005) Formin proteins: a domain-based approach. Trends Biochem Sci 30: 342–353.

    Article  PubMed  CAS  Google Scholar 

  • Kalab P, Heald R (2008) The RanGTP gradient – a GPS for the mitotic spindle. J Cell Sci 121: 1577–1586.

    Article  PubMed  CAS  Google Scholar 

  • Kalab P, Weis K, Heald R (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295: 2452–2456.

    Article  PubMed  CAS  Google Scholar 

  • Kalab P, Pralle A, Isacoff EY et al. (2006) Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440: 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Kovar DR (2006) Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Kumaran RI, Thakar R, Spector DL (2008) Chromatin dynamics and gene positioning. Cell 132: 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Leader B, Lim H, Carabatsos MJ et al. (2002) Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat cell biol 4: 921–928.

    Article  PubMed  CAS  Google Scholar 

  • Lenart P, Bacher CP, Daigle N et al. (2005) A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436: 812–818.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Guo F, Rubinstein B, Li R (2008) Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat cell biol 10: 1301–1308.

    Article  PubMed  CAS  Google Scholar 

  • Li R (2007) Cytokinesis in development and disease: variations on a common theme. Cell Mol Life Sci 64: 3044–3058.

    Article  PubMed  CAS  Google Scholar 

  • Longo FJ, Chen DY (1985) Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol 107: 382–394.

    Article  PubMed  CAS  Google Scholar 

  • Louvet E, Percipalle P (2009) Transcriptional control of gene expression by actin and myosin. Int Rev Cell Mol Biol 272: 107–147.

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Benink HA, Cheng D et al. (2006) Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation. Curr Biol 16: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Maro B, Verlhac MH (2002) Polar body formation: new rules for asymmetric divisions. Nat cell biol 4: E281–E283.

    Article  PubMed  CAS  Google Scholar 

  • Maro B, Johnson MH, Pickering SJ, Flach G (1984) Changes in actin distribution during fertilization of the mouse egg. J Embryol Exp Morphol 81: 211–237.

    PubMed  CAS  Google Scholar 

  • Maro B, Johnson MH, Webb M, Flach G (1986) Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J Embryol Exp Morphol 92: 11–32.

    PubMed  CAS  Google Scholar 

  • McIntosh JR, Grishchuk EL, West RR (2002) Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol 18: 193–219.

    Article  PubMed  CAS  Google Scholar 

  • Mehlmann LM, Terasaki M, Jaffe LA, Kline D (1995) Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev Biol 170: 607–615.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ (2005) Mechanism and function of poleward flux in Xenopus extract meiotic spindles. Philos Trans R Soc Lond B Biol Sci 360: 623–629.

    Article  PubMed  CAS  Google Scholar 

  • Moores CA, Keep NH, Kendrick-Jones J (2000) Structure of the utrophin actin-binding domain bound to F-actin reveals binding by an induced fit mechanism. J Mol Biol 297: 465–480.

    Article  PubMed  CAS  Google Scholar 

  • Na J, Zernicka-Goetz M (2006) Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Curr Biol 16: 1249–1254.

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130: 1102–1108.

    Article  PubMed  CAS  Google Scholar 

  • Pearson CG, Bloom K (2004) Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 5: 481–492.

    Article  PubMed  CAS  Google Scholar 

  • Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15: 651–658.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Evangelista M, Yang C et al. (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297: 612–615.

    Article  PubMed  CAS  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K et al. (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5: 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002a) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat cell biol 4: 42–50.

    PubMed  CAS  Google Scholar 

  • Sagot I, Rodal AA, Moseley J et al. (2002b) An actin nucleation mechanism mediated by Bni1 and profilin. Nat cell biol 4: 626–631.

    PubMed  CAS  Google Scholar 

  • Schloss JA, Milsted A, Goldman RD (1977) Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study. J Cell Biol 74: 794–815.

    Article  PubMed  CAS  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18: 1986–1992.

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Bloom K (2001) Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol 11: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat cell biol 11: 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2000) Evidence that actin and myosin are involved in the poleward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes. J Cell Sci 113 (Pt 4): 597–609.

    PubMed  CAS  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2001) Effects of anti-myosin drugs on anaphase chromosome movement and cytokinesis in crane-fly primary spermatocytes. Cell Motil Cytoskeleton 50: 180–197.

    Article  PubMed  CAS  Google Scholar 

  • Silverman-Gavrila RV, Forer A (2003) Myosin localization during meiosis I of crane-fly spermatocytes gives indications about its role in division. Cell Motil Cytoskeleton 55: 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Simerly C, Nowak G, de Lanerolle P, Schatten G (1998) Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol Biol Cell 9: 2509–2525.

    PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8: 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17: 683–710.

    Article  PubMed  CAS  Google Scholar 

  • Van Blerkom J, Bell H (1986) Regulation of development in the fully grown mouse oocyte: chromosome-mediated temporal and spatial differentiation of the cytoplasm and plasma membrane. J Embryol Exp Morphol 93: 213–238.

    PubMed  Google Scholar 

  • van Oudenaarden A, Theriot JA (1999) Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat cell biol 1: 493–499.

    Article  PubMed  Google Scholar 

  • Verlhac MH, Lefebvre C, Guillaud P et al. (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10: 1303–1306.

    Article  PubMed  CAS  Google Scholar 

  • Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265: 111–158.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Wang ZB, Zhang X et al. (2008) Brefeldin A disrupts asymmetric spindle positioning in mouse oocytes. Dev Biol 313: 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Hu J, Guo X et al. (2009) ADP-ribosylation factor 1 regulates asymmetric cell division in female meiosis in the mouse. Biol Reprod 80: 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Washington RW, Knecht DA (2008) Actin binding domains direct actin-binding proteins to different cytoskeletal locations. BMC Cell Biol 9: 10.

    Article  PubMed  Google Scholar 

  • Weber KL, Sokac AM, Berg JS et al. (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431: 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Woolner S, O'Brien LL, Wiese C, Bement WM (2008) Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol 182: 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Yang HY, McNally K, McNally FJ (2003) MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C elegans. Dev Biol 260: 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Yang HY, Mains PE, McNally FJ (2005) Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter. J Cell Biol 169: 447–457.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ma C, Miller AL et al. (2008) Polar body emission requires a RhoA contractile ring and Cdc42-mediated membrane protrusion. Dev Cell 15: 386–400.

    Article  PubMed  Google Scholar 

  • Zhu ZY, Chen DY, Li JS et al. (2003) Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol Reprod 68: 943–946.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Marie-Helene Verlhac for her corrections and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Li, R. (2010). Actin-based Chromosome Movements in Cell Division. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_7

Download citation

Publish with us

Policies and ethics