Skip to main content

Movement of Cargo in Bacterial Cytoplasm: Bacterial Actin Dynamics Drives Plasmid Segregation

  • Chapter
  • First Online:
Actin-based Motility
  • 1002 Accesses

Abstract

Actin was once considered an exclusive hallmark of eukaryotic cells. In 2001, however, a filament-forming actin homolog was discovered in eubacteria as a regulator of cell shape (Jones, 2001). Since that time, other bacterial actin filaments have been shown to segregate DNA (Moller-Jensen, 2002; Becker, 2006; Derman, 2009) and position organelles (Komelli, 2006). Recent bioinformatic analysis has identified dozens of families of Actin Like Proteins (ALPs) encoded on prokaryotic chromosomes, plasmids, and phages. While the overwhelming majority of these proteins remains uncharacterized, two plasmid-segregating bacterial actins, ParM and AlfA, have been studied in vitro. The architecture and assembly dynamics of these filaments and their mechanisms of force generation and cargo translocation are examined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amos LA, van den Ent F, Löwe J. (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol. 16(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  • Becker E, Herrera NC, Gunderson FQ, Derman AI, Dance AL, Sims J, Larsen RA, Pogliano J. (2006) DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J. 25(24):5919–31.

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A. 89(16):7290–94.

    Article  PubMed  CAS  Google Scholar 

  • Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C. (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO J. 28(9):1208–19. Epub 2009 Mar 12.

    Article  PubMed  CAS  Google Scholar 

  • Campbell CS, Mullins RD. (2007) In vivo visualization of type II plasmid segregation: Bacterial actin filaments pushing plasmids. J Cell Biol. 179(5):1059–66.

    Article  PubMed  CAS  Google Scholar 

  • Carballido-López R. (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev. 70(4):888–909.

    Article  PubMed  Google Scholar 

  • Choi CL, Claridge SA, Garner EC, Alivisatos AP, Mullins RD. (2008) Protein-nanocrystal conjugates support a single filament polymerization model in R1 plasmid segregation. J Biol Chem. 283(42):28081–86.

    Article  PubMed  CAS  Google Scholar 

  • Collins JH, Elzinga M. (1975) The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence. J Biol Chem. 250(15):5915–20.

    PubMed  CAS  Google Scholar 

  • Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, Patterson PC, Pogliano J. (2009) Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol. 73(4):534–52.

    Article  PubMed  CAS  Google Scholar 

  • Ebersbach G, Gerdes K. (2005) Plasmid segregation mechanisms. Annu Rev Genet. 39:453–79.

    Article  PubMed  CAS  Google Scholar 

  • Elzinga M. (1971) Amino acid sequence around 3-methylhistidine in rabbit skeletal muscle actin. Biochemistry. 10(2):224–99.

    Article  PubMed  CAS  Google Scholar 

  • Galkin VE, Orlova A, Rivera C, Mullins RD, Egelman EH. (2009) Structural polymorphism of the ParM filament and dynamic instability. Structure. 17(9):1253–64.

    Article  PubMed  CAS  Google Scholar 

  • Garner EC, Campbell CS, Weibel DB, Mullins RD. (2007) Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science. 315(5816):1270–4.

    Article  PubMed  CAS  Google Scholar 

  • Garner EC, Campbell CS, Mullins RD. (2004) Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science. 306(5698):1021–25.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes K, Møller-Jensen J, Ebersbach G, Kruse T, Nordström K. (2004) Bacterial mitotic machineries. Cell. 116(3):359–66.

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Oosawa F. (1966) Extraction of an actin-like protein from the plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle. J Cell Physiol. 68(2):197–202.

    Article  PubMed  CAS  Google Scholar 

  • Hill TL, Kirschner MW. (1982) Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work. Proc Natl Acad Sci USA. 79(2):490–94.

    Article  PubMed  CAS  Google Scholar 

  • Hoischen C, Bussiek M, Langowski J, Diekmann S. (2008) Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR. Nucleic Acids Res. 36(2):607–15.

    Article  PubMed  CAS  Google Scholar 

  • Holy TE, Leibler S. (1994) Dynamic instability of microtubules as an efficient way to search in space. Proc Natl Acad Sci U S A. 91(12):5682–85.

    Article  PubMed  CAS  Google Scholar 

  • Jensen GJ. Cell biology. (2009) Protein filaments caught in the act. Science. 323(5913):472–3.

    Article  PubMed  CAS  Google Scholar 

  • Jones LJ, Carballido-López R, Errington J. (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell. 104(6):913–22.

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ. (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science. 311(5758):242–45.

    Article  PubMed  CAS  Google Scholar 

  • Kruse T, Gerdes K. (2005) Bacterial DNA segregation by the actin-like MreB protein. Trends Cell Biol. 15(7):343–45.

    Article  PubMed  CAS  Google Scholar 

  • Kürner J, Medalia O, Linaroudis AA, Baumeister W. (2004) New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp Cell Res. 301(1):38–42.

    Article  PubMed  Google Scholar 

  • Löwe J, van den Ent F, Amos LA. (2004) Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct. 33:177–98.

    Article  PubMed  Google Scholar 

  • Mayer JA, Amann KJ. (2009) Assembly properties of the Bacillus subtilis actin, MreB. Cell Motil Cytoskeleton. 66(2):109–18.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison T, Kirschner M. (1984) Dynamic instability of microtubule growth. Nature. 312(5991):237–42.

    Article  PubMed  CAS  Google Scholar 

  • Møller-Jensen J, Borch J, Dam M, Jensen RB, Roepstorff P, Gerdes K. (2003) Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol Cell. 12(6):1477–87.

    Article  PubMed  Google Scholar 

  • Møller-Jensen J, Jensen RB, Löwe J, Gerdes K. (2002) Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21(12):3119–27.

    Article  PubMed  Google Scholar 

  • Møller-Jensen J, Gerdes K. (2004) Dynamic instability of a bacterial engine. Science. 306(5698):987–89.

    Article  PubMed  Google Scholar 

  • Møller-Jensen J, Ringgaard S, Mercogliano CP, Gerdes K, Löwe J. (2007) Structural analysis of the ParR/parC plasmid partition complex. EMBO J. 26(20):4413–22.

    Article  PubMed  Google Scholar 

  • Needleman DJ. (2008) Plasmid segregation: is a total understanding within reach? Curr Biol. 18(5):R212–14.

    Article  PubMed  CAS  Google Scholar 

  • Nolen BJ, Pollard TD. (2007) Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Mol Cell. 26(3):449–57.

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Garner EC, Galkin VE, Heuser J, Mullins RD, Egelman EH. (2007) The structure of bacterial ParM filaments. Nat Struct Mol Biol. 14(10):921–26.

    Article  PubMed  CAS  Google Scholar 

  • Poch O, Winsor B. (1997) Who’s who among the Saccharomyces cerevisiae actin-related proteins? A classification and nomenclature proposal for a large family. Yeast. 13(11): 1053–58.

    Article  PubMed  CAS  Google Scholar 

  • Polka JK, Kollman JM, Agard DA, Mullins RD. (2009) The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation. J Bacteriol. 191(20):6219–30.

    Article  PubMed  CAS  Google Scholar 

  • Popp D, Narita A, Oda T, Fujisawa T, Matsuo H, Nitanai Y, Iwasa M, Maeda K, Onishi H, Maéda Y. (2008) Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability. EMBO J. Feb 6;27(3):570–79.

    Article  PubMed  CAS  Google Scholar 

  • Salje J, Löwe J. (2008) Bacterial actin: architecture of the ParMRC plasmid DNA partitioning complex. EMBO J. 27(16):2230–38.

    Article  PubMed  CAS  Google Scholar 

  • Salje J, Zuber B, Löwe J. (2009) Electron cryomicroscopy of E. coli reveals filament bundles involved in plasmid DNA segregation. Science. 323(5913):509–12.

    Article  PubMed  CAS  Google Scholar 

  • Salmon ED. (2005) Microtubules: a ring for the depolymerization motor. Curr Biol. 15(8):R299–302.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher MA, Glover TC, Brzoska AJ, Jensen SO, Dunham TD, Skurray RA, Firth N. (2007) Segrosome structure revealed by a complex of ParR with centromere DNA. Nature. 450(7173):1268–71.

    Article  PubMed  CAS  Google Scholar 

  • Shively ed. (2006) “Complex Intracellular Structures in Prokaryotes” Springer, Berlin.

    Google Scholar 

  • Straub FB. (1942) Actin. “Studies from the Institute of Medical Chemistry, University Szeged. Vol II.” ed. A. Szent-Gyorgyi. S. Karger, Basel, Switzerland.

    Google Scholar 

  • van den Ent F, Møller-Jensen J, Amos LA, Gerdes K, Löwe J. (2002) F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21(24):6935–43.

    Article  PubMed  Google Scholar 

  • Verde F, Labbé JC, Dorée M, Karsenti E. (1990) Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature. 343(6255):233–38.

    Article  PubMed  CAS  Google Scholar 

  • Woldringh CL, Mulder E, Huls PG, Vischer N. (1991) Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiol. 142(2–3):309–20.

    Article  PubMed  CAS  Google Scholar 

  • Woldringh CL. (2002) The role of co-transcriptional translation and protein translocation (tran-sertion) in bacterial chromosome segregation. Mol Microbiol. 45(1): 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Yang YZ, Perdue JF. (1972) Contractile proteins of cultured cells. I. The isolation and characterization of an actin-like protein from cultured chick embryo fibroblasts. J Biol Chem. 247(14):4503–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dyche Mullins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Mullins, D. (2010). Movement of Cargo in Bacterial Cytoplasm: Bacterial Actin Dynamics Drives Plasmid Segregation. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_14

Download citation

Publish with us

Policies and ethics