Skip to main content

The WASP-Homology 2 Domain and Cytoskeleton Assembly

  • Chapter
  • First Online:
Actin-based Motility

Abstract

One of the most abundant and functionally diverse actin-binding folds is the WASP homology 2 (WH2 or W) domain. The W domain is found in proteins involved in actin monomer sequestration and cytoskeleton scaffolding, but is particularly abundant among proteins that mediate the de novo formation of actin filaments, which includes actin filament nucleation and elongation factors. Known filament nucleators include the Arp2/3 complex and its large family of Nucleation Promoting Factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules are generally unrelated, but with the exception of formins they all use the W domain for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Ena/VASP proteins are distantly related to WASP-family NPFs, and function as dedicated filament elongation factors among W-based nucleators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguda, A.H., Burtnick, L.D. and Robinson, R.C. (2005) The state of the filament. EMBO Rep 6, 220–226.

    PubMed  CAS  Google Scholar 

  • Ahuja, R., Pinyol, R., Reichenbach, N., Custer, L., Klingensmith, J., Kessels, M.M. and Qualmann, B. (2007) Cordon-Bleu Is an Actin Nucleation Factor and Controls Neuronal Morphology. Cell, 131, 337–350.

    PubMed  CAS  Google Scholar 

  • Bachmann, C., Fischer, L., Walter, U. and Reinhard, M. (1999) The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem, 274, 23549–23557.

    PubMed  CAS  Google Scholar 

  • Bamburg, J.R. (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol, 15, 185–230.

    PubMed  CAS  Google Scholar 

  • Bhavsar, A.P., Guttman, J.A. and Finlay, B.B. (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature, 449, 827–834.

    PubMed  CAS  Google Scholar 

  • Boczkowska, M., Rebowski, G., Petoukhov, M.V., Hayes, D.B., Svergun, D.I. and Dominguez, R. (2008) X-ray scattering study of activated Arp2/3 complex with bound actin-WCA. Structure, 16, 695–704.

    PubMed  CAS  Google Scholar 

  • Bompard, G. and Caron, E. (2004) Regulation of WASP/WAVE proteins: making a long story short. J Cell Biol, 166, 957–962.

    PubMed  CAS  Google Scholar 

  • Bosch, M., Le, K.H., Bugyi, B., Correia, J.J., Renault, L. and Carlier, M.F. (2007) Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol Cell, 28, 555–568.

    PubMed  CAS  Google Scholar 

  • Campellone, K.G., Webb, N.J., Znameroski, E.A. and Welch, M.D. (2008) WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell, 134, 148–161.

    PubMed  CAS  Google Scholar 

  • Carlier, M.F., Hertzog, M., Didry, D., Renault, L., Cantrelle, F.X., van Heijenoort, C., Knossow, M. and Guittet, E. (2007) Structure, function, and evolution of the beta-thymosin/WH2 (WASP-Homology2) actin-binding module. Ann NY Acad Sci, 1112, 67–75.

    PubMed  CAS  Google Scholar 

  • Chereau, D., Boczkowska, M., Skwarek-Maruszewska, A., Fujiwara, I., Hayes, D.B., Rebowski, G., Lappalainen, P., Pollard, T.D. and Dominguez, R. (2008) Leiomodin is an actin filament nucleator in muscle cells. Science, 320, 239–243.

    PubMed  CAS  Google Scholar 

  • Chereau, D., Kerff, F., Graceffa, P., Grabarek, Z., Langsetmo, K. and Dominguez, R. (2005) Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci U S A, 102, 16644–16649.

    PubMed  CAS  Google Scholar 

  • Chesarone, M.A. and Goode, B.L. (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol, 21, 28–37.

    PubMed  CAS  Google Scholar 

  • Chhabra, E.S. and Higgs, H.N. (2006) INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J Biol Chem, 281, 26754–26767.

    PubMed  CAS  Google Scholar 

  • Chhabra, E.S., Ramabhadran, V., Gerber, S.A. and Higgs, H.N. (2009) INF2 is an endoplasmic reticulum-associated formin protein. J Cell Sci, 122, 1430–1440.

    PubMed  CAS  Google Scholar 

  • Conley, C.A., Fritz-Six, K.L., Almenar-Queralt, A. and Fowler, V.M. (2001) Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics, 73, 127–139.

    PubMed  CAS  Google Scholar 

  • Copeland, J.W., Copeland, S.J. and Treisman, R. (2004) Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain. J Biol Chem, 279, 50250–50256.

    PubMed  CAS  Google Scholar 

  • Cossart, P. and Toledo-Arana, A. (2008) Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect, 10, 1041–1050.

    PubMed  CAS  Google Scholar 

  • Dahlgaard, K., Raposo, A.A., Niccoli, T. and St Johnston, D. (2007) Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell, 13, 539–553.

    PubMed  CAS  Google Scholar 

  • Dayel, M.J., Holleran, E.A. and Mullins, R.D. (2001) Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments. Proc Natl Acad Sci U S A, 98, 14871–14876.

    PubMed  CAS  Google Scholar 

  • Dominguez, R. (2004) Actin-binding proteins – a unifying hypothesis. Trends Biochem Sci, 29, 572–578.

    PubMed  CAS  Google Scholar 

  • Dominguez, R. (2007) The beta-thymosin/WH2 fold: multifunctionality and structure. Ann N Y Acad Sci, 1112, 86–94.

    PubMed  CAS  Google Scholar 

  • Dumas, J.J., Merithew, E., Sudharshan, E., Rajamani, D., Hayes, S., Lawe, D., Corvera, S. and Lambright, D.G. (2001) Multivalent endosome targeting by homodimeric EEA1. Mol Cell, 8, 947–958.

    PubMed  CAS  Google Scholar 

  • Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M. and Kirschner, M.W. (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418, 790–793.

    PubMed  CAS  Google Scholar 

  • Egile, C., Rouiller, I., Xu, X.P., Volkmann, N., Li, R. and Hanein, D. (2005) Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol, 3, e383.

    PubMed  Google Scholar 

  • Engqvist-Goldstein, A.E. and Drubin, D.G. (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19, 287–332.

    PubMed  CAS  Google Scholar 

  • Faix, J. and Grosse, R. (2006) Staying in shape with formins. Dev Cell 10, 693–706.

    PubMed  CAS  Google Scholar 

  • Ferron, F., Rebowski, G., Lee, S.H. and Dominguez, R. (2007) Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. Embo J, 26, 4597–4606.

    PubMed  CAS  Google Scholar 

  • Fischer, R.S. and Fowler, V.M. (2003) Tropomodulins: life at the slow end. Trends Cell Biol, 13, 593–601.

    PubMed  CAS  Google Scholar 

  • Fowler, V.M., Greenfield, N.J. and Moyer, J. (2003) Tropomodulin contains two actin filament pointed end-capping domains. J Biol Chem, 278, 40000–40009.

    PubMed  CAS  Google Scholar 

  • Futterer, K. and Machesky, L.M. (2007) “Wunder” F-BAR domains: going from pits to vesicles. Cell, 129, 655–657.

    PubMed  CAS  Google Scholar 

  • Gimona, M., Djinovic-Carugo, K., Kranewitter, W.J. and Winder, S.J. (2002) Functional plasticity of CH domains. FEBS Lett, 513, 98–106.

    PubMed  CAS  Google Scholar 

  • Goley, E.D., Rodenbusch, S.E., Martin, A.C. and Welch, M.D. (2004) Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. Mol Cell, 16, 269–279.

    PubMed  CAS  Google Scholar 

  • Goley, E.D. and Welch, M.D. (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol, 7, 713–726.

    PubMed  CAS  Google Scholar 

  • Goode, B.L. and Eck, M.J. (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem, 76, 593–627.

    PubMed  CAS  Google Scholar 

  • Gouin, E., Welch, M.D. and Cossart, P. (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol, 8, 35–45.

    PubMed  CAS  Google Scholar 

  • Gunst, S.J. and Zhang, W. (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol, 295, C576–587.

    PubMed  CAS  Google Scholar 

  • Hall, A. (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33, 891–895.

    PubMed  CAS  Google Scholar 

  • Hertzog, M., van Heijenoort, C., Didry, D., Gaudier, M., Coutant, J., Gigant, B., Didelot, G., Preat, T., Knossow, M., Guittet, E. and Carlier, M.F. (2004) The beta-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell, 117, 611–623.

    PubMed  CAS  Google Scholar 

  • Hertzog, M., Yarmola, E.G., Didry, D., Bubb, M.R. and Carlier, M.F. (2002) Control of actin dynamics by proteins made of beta-thymosin repeats: the actobindin family. J Biol Chem, 277, 14786–14792.

    PubMed  CAS  Google Scholar 

  • Higgs, H.N. (2005) Formin proteins: a domain-based approach. Trends Biochem Sci, 30, 342–353.

    PubMed  CAS  Google Scholar 

  • Holmes, K.C. (2009) Structural biology: actin in a twist. Nature, 457, 389–390.

    PubMed  CAS  Google Scholar 

  • Holmes, K.C. and Lehman, W. (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil, 29, 213–219.

    PubMed  CAS  Google Scholar 

  • Holmes, K.C., Popp, D., Gebhard, W. and Kabsch, W. (1990) Atomic model of the actin filament. Nature, 347, 44–49.

    PubMed  CAS  Google Scholar 

  • Irobi, E., Aguda, A.H., Larsson, M., Guerin, C., Yin, H.L., Burtnick, L.D., Blanchoin, L. and Robinson, R.C. (2004) Structural basis of actin sequestration by thymosin-beta4: implications for WH2 proteins. Embo J, 23, 3599–3608.

    PubMed  CAS  Google Scholar 

  • Jewett, T.J., Fischer, E.R., Mead, D.J. and Hackstadt, T. (2006) Chlamydial TARP is a bacterial nucleator of actin. Proc Natl Acad Sci U S A 103, 15599–15604.

    PubMed  CAS  Google Scholar 

  • Kaksonen, M., Toret, C.P. and Drubin, D.G. (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 7, 404–414.

    PubMed  CAS  Google Scholar 

  • Kelly, A.E., Kranitz, H., Dotsch, V. and Mullins, R.D. (2006) Actin binding to the central domain of WASP/Scar proteins plays a critical role in the activation of the Arp2/3 complex. J Biol Chem, 281, 10589–10597.

    PubMed  CAS  Google Scholar 

  • Kim, A.S., Kakalis, L.T., Abdul-Manan, N., Liu, G.A. and Rosen, M.K. (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature, 404, 151–158.

    PubMed  CAS  Google Scholar 

  • Kong, K.Y. and Kedes, L. (2004) Cytoplasmic nuclear transfer of the actin-capping protein tropomodulin. J Biol Chem 279, 30856–30864.

    PubMed  CAS  Google Scholar 

  • Kostyukova, A.S., Hitchcock-Degregori, S.E. and Greenfield, N.J. (2007) Molecular basis of tropomyosin binding to tropomodulin, an actin-capping protein. J Mol Biol, 372, 608–618.

    PubMed  CAS  Google Scholar 

  • Kreishman-Deitrick, M., Goley, E.D., Burdine, L., Denison, C., Egile, C., Li, R., Murali, N., Kodadek, T.J., Welch, M.D. and Rosen, M.K. (2005) NMR analyses of the activation of the Arp2/3 complex by neuronal Wiskott-Aldrich syndrome protein. Biochemistry, 44, 15247–15256.

    PubMed  CAS  Google Scholar 

  • Krieger, I., Kostyukova, A., Yamashita, A., Nitanai, Y. and Maeda, Y. (2002) Crystal structure of the C-terminal half of tropomodulin and structural basis of actin filament pointed-end capping. Biophys J, 83, 2716–2725.

    PubMed  CAS  Google Scholar 

  • Kuhnel, K., Jarchau, T., Wolf, E., Schlichting, I., Walter, U., Wittinghofer, A. and Strelkov, S.V. (2004) The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat. Proc Natl Acad Sci U S A, 101, 17027–17032.

    PubMed  Google Scholar 

  • Le Clainche, C. and Carlier, M.F. (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev, 88, 489–513.

    PubMed  Google Scholar 

  • Le Clainche, C., Didry, D., Carlier, M.F. and Pantaloni, D. (2001) Activation of Arp2/3 complex by Wiskott-Aldrich Syndrome protein is linked to enhanced binding of ATP to Arp2. J Biol Chem, 276, 46689–46692.

    PubMed  Google Scholar 

  • Lee, S.H., Kerff, F., Chereau, D., Ferron, F., Klug, A. and Dominguez, R. (2007) Structural Basis for the Actin-Binding Function of Missing-in-Metastasis. Structure, 15, 145–155.

    PubMed  Google Scholar 

  • Linardopoulou, E.V., Parghi, S.S., Friedman, C., Osborn, G.E., Parkhurst, S.M. and Trask, B.J. (2007) Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet, 3, e237.

    PubMed  Google Scholar 

  • Liu, R., Abreu-Blanco, M.T., Barry, K.C., Linardopoulou, E.V., Osborn, G.E. and Parkhurst, S.M. (2009) Wash functions downstream of Rho and links linear and branched actin nucleation factors. Development, 136, 2849–2860.

    PubMed  CAS  Google Scholar 

  • Liverman, A.D., Cheng, H.C., Trosky, J.E., Leung, D.W., Yarbrough, M.L., Burdette, D.L., Rosen, M.K. and Orth, K. (2007) Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci U S A, 104, 17117–17122.

    PubMed  CAS  Google Scholar 

  • Ma, L., Rohatgi, R. and Kirschner, M.W. (1998) The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci U S A, 95, 15362–15367.

    PubMed  CAS  Google Scholar 

  • Machesky, L.M., Atkinson, S.J., Ampe, C., Vandekerckhove, J. and Pollard, T.D. (1994) Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol, 127, 107–115.

    PubMed  CAS  Google Scholar 

  • Machesky, L.M. and Insall, R.H. (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol, 8, 1347–1356.

    PubMed  CAS  Google Scholar 

  • Machesky, L.M. and Johnston, S.A. (2007) MIM: a multifunctional scaffold protein. J Mol Med, 85, 569–576.

    PubMed  CAS  Google Scholar 

  • Machesky, L.M., Mullins, R.D., Higgs, H.N., Kaiser, D.A., Blanchoin, L., May, R.C., Hall, M.E. and Pollard, T.D. (1999) Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci U S A, 96, 3739–3744.

    PubMed  CAS  Google Scholar 

  • Marchand, J.B., Kaiser, D.A., Pollard, T.D. and Higgs, H.N. (2001) Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol, 3, 76–82.

    PubMed  CAS  Google Scholar 

  • Mattila, P.K., Salminen, M., Yamashiro, T. and Lappalainen, P. (2003) Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem, 278, 8452–8459.

    PubMed  CAS  Google Scholar 

  • McLaughlin, P.J., Gooch, J.T., Mannherz, H.G. and Weeds, A.G. (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature, 364, 685–692.

    PubMed  CAS  Google Scholar 

  • Miki, H. and Takenawa, T. (1998) Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem Biophys Res Commun, 243, 73–78.

    PubMed  CAS  Google Scholar 

  • Mullins, R.D., Heuser, J.A. and Pollard, T.D. (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A, 95, 6181–6186.

    PubMed  CAS  Google Scholar 

  • Nolen, B.J. and Pollard, T.D. (2007) Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Mol Cell, 26, 449–457.

    PubMed  CAS  Google Scholar 

  • Oda, T., Iwasa, M., Aihara, T., Maeda, Y. and Narita, A. (2009) The nature of the globular- to fibrous-actin transition. Nature, 457, 441–445.

    PubMed  CAS  Google Scholar 

  • Paavilainen, V.O., Oksanen, E., Goldman, A. and Lappalainen, P. (2008) Structure of the actin-depolymerizing factor homology domain in complex with actin. J Cell Biol, 182, 51–59.

    PubMed  CAS  Google Scholar 

  • Padrick, S.B., Cheng, H.C., Ismail, A.M., Panchal, S.C., Doolittle, L.K., Kim, S., Skehan, B.M., Umetani, J., Brautigam, C.A., Leong, J.M. and Rosen, M.K. (2008) Hierarchical regulation of WASP/WAVE proteins. Mol Cell, 32, 426–438.

    PubMed  CAS  Google Scholar 

  • Pan, F., Egile, C., Lipkin, T. and Li, R. (2004) ARPC1/Arc40 mediates the interaction of the actin-related protein 2 and 3 complex with Wiskott-Aldrich syndrome protein family activators. J Biol Chem, 279, 54629–54636.

    PubMed  CAS  Google Scholar 

  • Panchal, S.C., Kaiser, D.A., Torres, E., Pollard, T.D. and Rosen, M.K. (2003) A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat Struct Biol, 10, 591–598.

    PubMed  CAS  Google Scholar 

  • Paul, A.S. and Pollard, T.D. (2009) Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton, 66, 606–617.

    PubMed  CAS  Google Scholar 

  • Paunola, E., Mattila, P.K. and Lappalainen, P. (2002) WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett, 513, 92–97.

    PubMed  CAS  Google Scholar 

  • Pollard, T.D. (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct, 36, 451–477.

    PubMed  CAS  Google Scholar 

  • Pollard, T.D. and Borisy, G.G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453–465.

    PubMed  CAS  Google Scholar 

  • Quinlan, M.E., Heuser, J.E., Kerkhoff, E. and Mullins, R.D. (2005) Drosophila Spire is an actin nucleation factor. Nature, 433, 382–388.

    PubMed  CAS  Google Scholar 

  • Quinlan, M.E., Hilgert, S., Bedrossian, A., Mullins, R.D. and Kerkhoff, E. (2007) Regulatory interactions between two actin nucleators, Spire and Cappuccino. J Cell Biol, 179, 117–128.

    PubMed  CAS  Google Scholar 

  • Quinlan, M.E. and Kerkhoff, E. (2008) Actin nucleation: bacteria get in-Spired. Nat Cell Biol, 10, 13–15.

    PubMed  CAS  Google Scholar 

  • Rebowski, G., Boczkowska, M., Hayes, D.B., Guo, L., Irving, T.C. and Dominguez, R. (2008) X-ray scattering study of actin polymerization nuclei assembled by tandem W domains. Proc Natl Acad Sci U S A, 105, 10785–10790.

    PubMed  CAS  Google Scholar 

  • Renault, L., Bugyi, B. and Carlier, M.F. (2008) Spire and Cordon-bleu: multifunctional regulators of actin dynamics. Trends Cell Biol, 18, 494–504.

    PubMed  CAS  Google Scholar 

  • Robinson, R.C., Turbedsky, K., Kaiser, D.A., Marchand, J.B., Higgs, H.N., Choe, S. and Pollard, T.D. (2001) Crystal structure of Arp2/3 complex. Science, 294, 1679–1684.

    PubMed  CAS  Google Scholar 

  • Rodal, A.A., Sokolova, O., Robins, D.B., Daugherty, K.M., Hippenmeyer, S., Riezman, H., Grigorieff, N. and Goode, B.L. (2005) Conformational changes in the Arp2/3 complex leading to actin nucleation. Nat Struct Mol Biol, 12, 26–31.

    PubMed  CAS  Google Scholar 

  • Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T. and Kirschner, M.W. (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221–231.

    PubMed  CAS  Google Scholar 

  • Rosales-Nieves, A.E., Johndrow, J.E., Keller, L.C., Magie, C.R., Pinto-Santini, D.M. and Parkhurst, S.M. (2006) Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol, 8, 367–376.

    PubMed  CAS  Google Scholar 

  • Rouiller, I., Xu, X.P., Amann, K.J., Egile, C., Nickell, S., Nicastro, D., Li, R., Pollard, T.D., Volkmann, N. and Hanein, D. (2008) The structural basis of actin filament branching by the Arp2/3 complex. J Cell Biol, 180, 887–895.

    PubMed  CAS  Google Scholar 

  • Ryan, T.A. (2006) A pre-synaptic to-do list for coupling exocytosis to endocytosis. Curr Opin Cell Biol, 18, 416–421.

    PubMed  CAS  Google Scholar 

  • Saarikangas, J., Hakanen, J., Mattila, P.K., Grumet, M., Salminen, M. and Lappalainen, P. (2008) ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension. J Cell Sci, 121, 1444–1454.

    PubMed  CAS  Google Scholar 

  • Saarikangas, J., Zhao, H., Pykalainen, A., Laurinmaki, P., Mattila, P.K., Kinnunen, P.K., Butcher, S.J. and Lappalainen, P. (2009) Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins. Curr Biol, 19, 95–107.

    PubMed  CAS  Google Scholar 

  • Safer, D., Golla, R. and Nachmias, V.T. (1990) Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets. Proc Natl Acad Sci U S A, 87, 2536–2540.

    PubMed  CAS  Google Scholar 

  • Sanger, J.M. and Sanger, J.W. (2008) The dynamic Z bands of striated muscle cells. Sci Signal, 1, pe37.

    Google Scholar 

  • Scita, G., Confalonieri, S., Lappalainen, P. and Suetsugu, S. (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol, 18, 52–60.

    PubMed  CAS  Google Scholar 

  • Sept, D. and McCammon, J.A. (2001) Thermodynamics and kinetics of actin filament nucleation. Biophys J, 81, 667–674.

    PubMed  CAS  Google Scholar 

  • Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H.L. and Hayoz, D. (2004) Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61, 2614–2623.

    PubMed  CAS  Google Scholar 

  • Skwarek-Maruszewska, A., Hotulainen, P., Mattila, P.K. and Lappalainen, P. (2009) Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci, 122, 2119–2126.

    PubMed  CAS  Google Scholar 

  • Symons, M., Derry, J.M., Karlak, B., Jiang, S., Lemahieu, V., McCormick, F., Francke, U. and Abo, A. (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell, 84, 723–734.

    PubMed  CAS  Google Scholar 

  • Tam, V.C., Serruto, D., Dziejman, M., Brieher, W. and Mekalanos, J.J. (2007) A Type III Secretion System in Vibrio cholerae Translocates a Formin/Spire Hybrid-like Actin Nucleator to Promote Intestinal Colonization. Cell Host and Microbe, 1, 95–107.

    PubMed  CAS  Google Scholar 

  • Van Troys, M., Ono, K., Dewitte, D., Jonckheere, V., De Ruyck, N., Vandekerckhove, J., Ono, S. and Ampe, C. (2004) TetraThymosinbeta is required for actin dynamics in Caenorhabditis elegans and acts via functionally different actin-binding repeats. Mol Biol Cell, 15, 4735–4748.

    PubMed  Google Scholar 

  • Wang, J., Shaner, N., Mittal, B., Zhou, Q., Chen, J., Sanger, J.M. and Sanger, J.W. (2005) Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton, 61, 34–48.

    PubMed  CAS  Google Scholar 

  • Weaver, A.M., Heuser, J.E., Karginov, A.V., Lee, W.L., Parsons, J.T. and Cooper, J.A. (2002) Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol, 12, 1270–1278.

    PubMed  CAS  Google Scholar 

  • Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A. and Mitchison, T.J. (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science, 281, 105–108.

    PubMed  CAS  Google Scholar 

  • Winter, D., Lechler, T. and Li, R. (1999) Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr Biol, 9, 501–504.

    PubMed  CAS  Google Scholar 

  • Yarar, D., To, W., Abo, A. and Welch, M.D. (1999) The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr Biol, 9, 555–558.

    PubMed  CAS  Google Scholar 

  • Zalevsky, J., Grigorova, I. and Mullins, R.D. (2001) Activation of the Arp2/3 complex by the Listeria acta protein. Acta binds two actin monomers and three subunits of the Arp2/3 complex. J Biol Chem, 276, 3468–3475.

    PubMed  CAS  Google Scholar 

  • Zuchero, J.B., Coutts, A.S., Quinlan, M.E., Thangue, N.B. and Mullins, R.D. (2009) p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol, 11, 451–459.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by NIH grants GM073791.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Dominguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Dominguez, R. (2010). The WASP-Homology 2 Domain and Cytoskeleton Assembly. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_11

Download citation

Publish with us

Policies and ethics