Skip to main content

From Molecules to Movement: In Vitro Reconstitution of Self-Organized Actin-based Motile Processes

  • Chapter
  • First Online:
Actin-based Motility

Abstract

This chapter shows how a bottom-up approach has been instrumental in understanding and reconstituting actin-based movement from a minimum set of 5 individual purified proteins. We delineate the essential thermodynamic features that support actin-based movement as follows. We demonstrate first that the regulated treadmilling of actin filaments fuels the growth of barbed ends to develop protrusive or propulsive force against a functionalized soft or solid particle. Second, global inhibition of actin assembly in the medium and local stimulation of actin assembly restricts filament growth to specific sites and controls the filament size and its transient growth period against the particle; hence, stationary propulsion of the particle results from a balance between creation of new filaments and death of these filaments. Third, transient or permanent links between the particle-immobilized actin-nucleating machinery play an important role in maintaining the morphology of the force-producing actin meshwork and the velocity of the propulsion. These principles allow reconstitution of propulsive branched actin networks and formin-based processive growth of actin bundles. Finally upgrading the complexity of the bottom-up approach offers perspectives in analyzing more complex actin-based processes that occur in axis patterning and morphogenesis, as well as understanding the physical-chemical basis for the coordinated turnover of various actin structures during cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ. (1989) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA. 86, 3867–71.

    Article  PubMed  CAS  Google Scholar 

  • Block J, Stradal TE, Hänisch J, Geffers R, Köstler SA, Urban E, Small JV, Rottner K, Faix J. (2008) Filopodia formation induced by active mDia2/Drf3. J Microsc. 231, 506–17.

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Le KH, Bugyi B, Correia JJ, Renault L, Carlier MF. (2007) Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol Cell. 28, 555–68.

    Article  PubMed  CAS  Google Scholar 

  • Bugyi B and Carlier MF. (2010) Control of actin filament treadmilling in cell motility. Annu Rev Biophys. 39, 449–70.

    Article  PubMed  CAS  Google Scholar 

  • Bugyi B, Didry D, Carlier MF. (2010) How tropomyosin regulates lamellipodial actin-based motility: a combined biochemical and reconstituted motility approach. EMBO J. 29, 14–26.

    Article  PubMed  CAS  Google Scholar 

  • Burroughs NJ, Marenduzzo D. (2007) Nonequilibrium-driven motion in actin networks: comet tails and moving beads. Phys Rev Lett. 98, 238302.

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D. (1997). ADF /cofilin enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 136, 1307–22.

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Pantaloni D. (1997) Control of actin dynamics in cell motility. J Mol Biol. 269, 459–67.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AE. (2003) Growth velocities of branched actin networks. Biophys J. 84, 2907–18.

    Article  PubMed  CAS  Google Scholar 

  • Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA. (1999) Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci USA. 96, 4908–13.

    Article  PubMed  CAS  Google Scholar 

  • Cameron LA, Giardini PA, Soo FS, Theriot JA. (2000) Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol. 1, 110–9. Review.

    Article  PubMed  CAS  Google Scholar 

  • Cossart P. (2000) Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell Microbiol. 2, 195–205. Review.

    Article  PubMed  CAS  Google Scholar 

  • Dahlgaard K, Raposo AA, Niccoli T, St Johnston D. (2007) Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell. 13, 539–53.

    Article  PubMed  CAS  Google Scholar 

  • Dayel MJ, Akin O, Landeryou M, Risca V, Mogilner A, Mullins RD. (2009) In silico reconstitution of actin-based symmetry breaking and motility. PLoS Biol. 7, e1000201

    Article  PubMed  Google Scholar 

  • Delatour V, Helfer E, Didry D, Lê KH, Gaucher JF, Carlier MF, Romet-Lemonne G. (2008) Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments. Biophys J. 94, 4890–905.

    Article  PubMed  CAS  Google Scholar 

  • Didry D, Carlier MF, Pantaloni D. (1998) Synergy between actin depolymerizing factor and profilin in increasing filament turnover. J Biol Chem. 273, 25602–25611.

    Article  PubMed  CAS  Google Scholar 

  • Ditlev JA, Vacanti NM, Novak IL, Loew LM. (2009) An open model of actin dendritic nucleation. Biophys J. 96, 3529–42.

    Article  PubMed  CAS  Google Scholar 

  • Dodding MP, Way M. (2009) Nck- and N-WASP-dependent actin-based motility is conserved in divergent vertebrate poxviruses. Cell Host Microbe. 2009 Dec 17;6(6), 536–50.

    Article  PubMed  CAS  Google Scholar 

  • Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF. (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J CellBiol. 146, 1319–32.

    Article  CAS  Google Scholar 

  • Frischknecht F, Moreau V, Röttger S, Gonfloni S, Reckmann I, Superti-Furga G, Way M. (1999) Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature. 401, 926–9.

    Article  PubMed  CAS  Google Scholar 

  • Gerbal F, Laurent V, Ott A, Carlier MF, Chaikin P, Prost J. (2000) Measurement of the elasticity of the actin tail of Listeria monocytogenes. Eur Biophys J. 29, 134–40.

    Article  PubMed  CAS  Google Scholar 

  • Giardini PA, Fletcher DA, Theriot JA. (2003) Compression forces generated by actin comet tails on lipid vesicles. Proc Natl Acad Sci USA. 100, 6493–8.

    Article  PubMed  CAS  Google Scholar 

  • Goode BL, Eck MJ. (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem. 76, 593–627.

    Article  PubMed  CAS  Google Scholar 

  • Heinzen RA, Hayes SF, Peacock MG, Hackstadt T. (1993) Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect Immun. 61, 1926–35.

    PubMed  CAS  Google Scholar 

  • Heuvingh J, Franco M, Chavrier P, Sykes C. (2007) ARF1-mediated actin polymerization produces movement of artificial vesicles. Proc Natl Acad Sci USA. 104, 16928–33.

    Article  PubMed  CAS  Google Scholar 

  • Iwasa JH, Mullins RD. (2007) Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol. 17, 395–406.

    Article  PubMed  CAS  Google Scholar 

  • Jeng RL, Goley ED, D’Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA, Welch MD. (2004) A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol. 6, 761–9.

    Article  PubMed  CAS  Google Scholar 

  • Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P. (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell. 68, 521–31.

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TE, Dunn GA, Small JV, Rottner K (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–892.

    Article  PubMed  CAS  Google Scholar 

  • Laurent V, Loisel TP, Harbeck B, Wehman A, Gröbe L, Jockusch BM, Wehland J, Gertler FB, Carlier MF. (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol. 144, 1245–58.

    Article  PubMed  CAS  Google Scholar 

  • Le Clainche C, Carlier MF. (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev. 88, 489–513. Review.

    Article  PubMed  Google Scholar 

  • Loisel TP, Boujemaa R, Pantaloni D, Carlier MF. (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature. 401, 613–6.

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Cooper JA. (1999) Cell motility. Bare bones of the cytoskeleton. Nature. 401, 542–3.

    Article  PubMed  CAS  Google Scholar 

  • Manseau LJ, Schüpbach T. (1989) cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3, 1437–52.

    Article  PubMed  CAS  Google Scholar 

  • Marcy Y, Prost J, Carlier MF, Sykes C. (2004) Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc Natl Acad Sci USA. 101, 5992–7.

    Article  PubMed  CAS  Google Scholar 

  • Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298, 1209–13.

    Article  PubMed  CAS  Google Scholar 

  • Medalia O, Beck M, Ecke M, Weber I, Neujahr R, Baumeister W, Gerisch G. (2007) Organization of actin networks in intact filopodia. Curr Biol.17, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Oster G. (2003) Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys J. 84, 1591–605.

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Rubinstein B. (2005) The physics of filopodial protrusion. Biophys J. 89, 782–95.

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A. (2006) On the edge: modeling protrusion. Curr Opin Cell Biol. 18, 32–9.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG. (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell. 118, 363–73.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni D, Carlier MF (1993) How profilin promotes actin filament assembly in the presence of thymosin ß4. Cell 75, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni D, Le Clainche C, Carlier MF. (2001) Mechanism of actin-based motility. Science. 292, 1502–6. Review.

    Article  PubMed  CAS  Google Scholar 

  • Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA. (2005) Loading history determines the velocity of actin-network growth. Nat Cell Biol. 7, 1219–23.

    Article  PubMed  Google Scholar 

  • Pollard TD, Cooper JA (1984) Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23, 6631–664.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD. (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 36, 451–77.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Cooper JA. (2009) Actin, a central player in cell shape and movement.Science. 326, 1208–12.

    Article  PubMed  CAS  Google Scholar 

  • Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier MF. (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell. 119, 419–29.

    Article  PubMed  CAS  Google Scholar 

  • Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. (2008) The structural basis of actin filament branching by the Arp2/3 complex. J Cell Biol. 180, 887–95.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, van der Gucht J, Biesheuvel PM, Weinkamer R, Helfer E, Fery A. (2008) Non-Gaussian curvature distribution of actin-propelled biomimetic colloid trajectories. Eur Biophys J. 37, 1361–6.

    Article  PubMed  Google Scholar 

  • Schwille P, Diez S. (2009) Synthetic biology of minimal systems. Crit Rev Biochem Mol Biol. 44, 223–242.

    Article  PubMed  CAS  Google Scholar 

  • Shaevitz JW, Fletcher DA. (2007) Load fluctuations drive actin network growth. Proc Natl Acad Sci USA. 104, 15688–92.

    Article  PubMed  CAS  Google Scholar 

  • Small JV (1995) getting the actin filaments straight: nucleation-release or treadmilling? Trends in Cell Biol. 5, 52–55.

    Article  CAS  Google Scholar 

  • Small JV Stradal T, Vignal E, Small JV (2002). The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120.

    Article  Google Scholar 

  • Taunton J. (2001) Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr Opin Cell Biol.13, 85–91. Review.

    Article  PubMed  CAS  Google Scholar 

  • Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA. (1992) The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357, 257–60.

    Article  PubMed  CAS  Google Scholar 

  • Theriot JA, Rosenblatt J, Portnoy DA, Goldschmidt-Clermont PJ, Mitchison TJ. (1994) Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell. 76, 505–17.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Portnoy DA. (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1), 1597–608.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya A, van Oudenaarden A. (2003) Biomimetic systems for studying actin-based motility. Curr Biol. 13, R734–44. Review.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya A, Chabot JR, Andreeva A, Samadani A, van Oudenaarden A. (2003) Probing polymerization forces by using actin-propelled lipid vesicles. Proc Natl Acad Sci USA. 100, 4521–6.

    Article  PubMed  CAS  Google Scholar 

  • van Oudenaarden A, Theriot JA. (1999) Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat Cell Biol. 1, 493–9.

    Article  PubMed  Google Scholar 

  • Wang YL (1985) Excahnge of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Wegner A. (1976) Head to tail polymerization of actin. J Mol Biol. 108, 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Wegner A. (1982) Treadmilling of actin at physiological salt concentrations. An analysis of the critical concentrations of actin filaments. J. Mol. Biol. 161, 607–615.

    Article  PubMed  CAS  Google Scholar 

  • Weisswange I, Newsome TP, Schleich S, Way M. (2009) The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature.458, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Welch MD, Iwamatsu A, Mitchison TJ. (1997) Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature. 385, 265–9.

    Article  PubMed  CAS  Google Scholar 

  • Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ. (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science. 281, 105–8.

    Article  PubMed  CAS  Google Scholar 

  • Wiesner S, Helfer E, Didry D, Ducouret G, Lafuma F, Carlier MF, Pantaloni D. (2003) A biomimetic motility assay provides insight into the mechanism of actin-based motility. J Cell Biol. 160, 387–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-France Carlier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Carlier, MF., Pantaloni, D. (2010). From Molecules to Movement: In Vitro Reconstitution of Self-Organized Actin-based Motile Processes. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_10

Download citation

Publish with us

Policies and ethics