Skip to main content

Origin and Evolution of Snake Venom Prothrombin Activators

  • Chapter
  • First Online:
Toxins and Hemostasis

Abstract

Snake venom is a mixture of various proteins and peptides with distinct pharmacological properties. They have the unique aptitude to attack specific physiological systems of the prey with remarkable specificity and thereby obstruct the natural function culminating in death and debilitation of the victim. The origin of snake venom toxins is one of the most interesting question that intrigued scientists for a long time. In this chapter, we will discuss the origin of a particular group of venom proteins, namely prothrombin activators. The results from our recent studies provide molecular evidence that this class of deadly toxins have evolved by gene duplication and recruitment of blood coagulation factor gene. Thus a new toxin has evolved after recruitment from a simple body protein that is involved in its own lifesaving haemostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, G.C., Hall, G., Jr., Michalowski, S., Newman, W., Spiker, S., Weissinger, A.K., Thompson, W.F., 1996. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8, 899–913.

    PubMed  CAS  Google Scholar 

  • Blasquez, V.C., Xu, M., Moses, S.C., Garrard, W.T., 1989. Immunoglobulin kappa gene expression after stable integration. I. Role of the intronic MAR and enhancer in plasmacytoma cells. J. Biol. Chem. 264, 21183–21189.

    PubMed  CAS  Google Scholar 

  • Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C., Kohwi-Shigematsu, T., 1992. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255, 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Braud, S., Bon, C., Wisner, A., 2000. Snake venom proteins acting on hemostasis. Biochimie 82, 851–859.

    Article  PubMed  CAS  Google Scholar 

  • Chester, A., Crawford, G.P., 1982. In vitro coagulant properties of venoms from Australian snakes. Toxicon 20, 501–504.

    Article  PubMed  CAS  Google Scholar 

  • Chow, G., Kini, R.M., 2001. Exogenous factors from animal sources that induce platelet aggregation. Thromb. Haemost. 85, 177–178.

    PubMed  CAS  Google Scholar 

  • Esmon, C.T., 2001. Role of coagulation inhibitors in inflammation. Thromb. Haemost. 86, 51–56.

    PubMed  CAS  Google Scholar 

  • Foster, W.B., Nesheim, M.E., Mann, K.G., 1983. The factor Xa-catalyzed activation of factor V. J. Biol. Chem. 258, 13970–13977.

    PubMed  CAS  Google Scholar 

  • Fujimi, T.J., Kariya, Y., Tsuchiya, T., Tamiya, T., 2002. Nucleotide sequence of phospholipase A2 gene expressed in snake pancreas reveals the molecular evolution of toxic phospholipase A2 genes. Gene 292, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Fujimi, T.J., Nakajyo, T., Nishimura, E., Ogura, E., Tsuchiya, T., Tamiya, T., 2003. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences. Gene 313, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Gao, R., Kini, R.M., Gopalakrishnakone, P., 2002. A novel prothrombin activator from the venom of Micropechis ikaheka: isolation and characterization. Arch. Biochem. Biophys. 408, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Guinto, E.R., Esmon, C.T., Mann, K.G., MacGillivray, R.T., 1992. The complete cDNA sequence of bovine coagulation factor V. J. Biol. Chem. 267, 2971–2978.

    PubMed  CAS  Google Scholar 

  • Hasson, S.S., Theakston, R.D., Harrison, R.A., 2003. Cloning of a prothrombin activator-like metalloproteinase from the West African saw-scaled viper, Echis ocellatus. Toxicon 42, 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Hortin, G.L., 1990. Sulfation of tyrosine residues in coagulation factor V. Blood 76, 946–952.

    PubMed  CAS  Google Scholar 

  • Hung, H.L., High, K.A., 1996. Liver-enriched transcription factor HNF-4 and ubiquitous factor NF-Y are critical for expression of blood coagulation factor X. J. Biol. Chem. 271, 2323–2331.

    Article  PubMed  CAS  Google Scholar 

  • Hung, H.L., Pollak, E.S., Kudaravalli, R.D., Arruda, V., Chu, K., High, K.A., 2001. Regulation of human coagulation factor X gene expression by GATA-4 and the Sp family of transcription factors. Blood 97, 946–951.

    Article  PubMed  CAS  Google Scholar 

  • Hutton, R.A., Warrell, D.A., 1993. Action of snake venom components on the haemostatic system. Blood Rev. 7, 176–189.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, K., Morita, T., 1993. Identification of O-linked oligosaccharide chains in the activation peptides of blood coagulation factor X. The role of the carbohydrate moieties in the activation of factor X. Eur. J. Biochem. 218, 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Jeyaseelan, K., Armugam, A., Donghui, M., Tan, N.H., 2000. Structure and phylogeny of the venom group I phospholipase A2 gene. Mol. Biol. Evol. 17, 1010–1021.

    Article  PubMed  CAS  Google Scholar 

  • Jobin, F., Esnouf, M.P., 1966. Coagulant activity of tiger snake (Notechis scutatus scutatus) venom. Nature 211, 873–875.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J.S., Chung, M.C., Jeyaseelan, K., Kini, R.M., 1999. Amino acid sequence of trocarin, a prothrombin activator from Tropidechis carinatus venom: its structural similarity to coagulation factor Xa. Blood 94, 621–631.

    PubMed  CAS  Google Scholar 

  • Joseph, J.S., Kini, R.M., 2001. Snake venom prothrombin activators homologous to blood coagulation factor Xa. Haemostasis 31, 234–240.

    PubMed  CAS  Google Scholar 

  • Joseph, J.S., Thirumangalathu, S., Tsang, F., Wong, F.W., Kini, R.M., 2003. Trocarin, a blood coagulation factor Xa homologue from snake venom, causes inflammation and mitogenesis. Toxicon 42, 769–776.

    Article  PubMed  CAS  Google Scholar 

  • Kalafatis, M., 1998. Identification and partial characterization of factor Va heavy chain kinase from human platelets. J. Biol. Chem. 273, 8459–8466.

    Article  PubMed  CAS  Google Scholar 

  • Kalafatis, M., Mann, K.G., 1993. Role of the membrane in the inactivation of factor Va by activated protein C. J. Biol. Chem. 268, 27246–27257.

    PubMed  CAS  Google Scholar 

  • Kalafatis, M., Rand, M.D., Mann, K.G., 1994. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J. Biol. Chem. 269, 31869–31880.

    PubMed  CAS  Google Scholar 

  • Kane, W.H., Devore-Carter, D., Ortel, T.L., 1990. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region. Biochemistry 29, 6762–6768.

    Article  PubMed  CAS  Google Scholar 

  • Kini, R.M., 2004. Platelet aggregation and exogenous factors from animal sources. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4, 301–325.

    Article  PubMed  CAS  Google Scholar 

  • Kini, R.M., Chow, G., 2001. Exogenous inhibitors of platelet aggregation from animal sources. Thromb. Haemost. 85, 179–181.

    PubMed  CAS  Google Scholar 

  • Kini, R.M., Evans, H.J., 1990. Effects of snake venom proteins on blood platelets. Toxicon 28, 1387–1422.

    Article  PubMed  CAS  Google Scholar 

  • Kini, R.M., Morita, T., Rosing, J., 2001a. Classification and nomenclature of prothrombin activators isolated from snake venoms. Thromb. Haemost. 86, 710–711.

    CAS  Google Scholar 

  • Kini, R.M., Rao, V.S., Joseph, J.S., 2001b. Procoagulant proteins from snake venoms. Haemostasis 31, 218–224.

    PubMed  CAS  Google Scholar 

  • Kornalik, F., Blomback, B., 1975. Prothrombin activation induced by Ecarin – a prothrombin converting enzyme from Echis carinatus venom. Thromb. Res. 6, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Kwong, S., Woods, A.E., Mirtschin, P.J., Ge, R., Kini, R.M., 2009. The recruitment of blood coagulation factor X into snake venom gland as a toxin: the role of promoter cis-elements in its expression. Thromb. Haemost. 102, 469–478.

    PubMed  CAS  Google Scholar 

  • Lavin, M.F., Masci, P.P., 2009. Prothrombinase complexes with different physiological roles. Thromb. Haemost. 102, 421–423.

    PubMed  CAS  Google Scholar 

  • Mann, K.G., Hockin, M.F., Begin, K.J., Kalafatis, M., 1997. Activated protein C cleavage of factor Va leads to dissociation of the A2 domain. J. Biol. Chem. 272, 20678–20683.

    Article  PubMed  CAS  Google Scholar 

  • Markland, F.S., Jr., 1997. Snake venoms. Drugs 54(Suppl3), 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Markland, F.S., 1998. Snake venoms and the hemostatic system. Toxicon 36, 1749–1800.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, L.R., Herrmann, R.P., 1983. Coagulant and anticoagulant actions of Australian snake venoms. Thromb. Haemost. 50, 707–711.

    PubMed  CAS  Google Scholar 

  • McMullen, B.A., Fujikawa, K., Kisiel, W., Sasagawa, T., Howald, W.N., Kwa, E.Y., Weinstein, B., 1983. Complete amino acid sequence of the light chain of human blood coagulation factor X: evidence for identification of residue 63 as beta-hydroxyaspartic acid. Biochemistry 22, 2875–2884.

    Article  PubMed  CAS  Google Scholar 

  • Minh, L.T., Reza, M.A., Swarup, S., Kini, R.M., 2005. Gene duplication of coagulation factor V and origin of venom prothrombin activator in Pseudonaja textilis snake. Thromb. Haemost. 93, 420–429.

    Google Scholar 

  • Morita, T., 2004. C-type lectin-related proteins from snake venoms. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4, 357–373.

    Article  PubMed  CAS  Google Scholar 

  • Morita, T., Iwanaga, S., 1978. Purification and properties of prothrombin activator from the venom of Echis carinatus. J. Biochem. (Tokyo) 83, 559–570.

    CAS  Google Scholar 

  • Nesheim, M.E., Canfield, W.M., Kisiel, W., Mann, K.G., 1982. Studies of the capacity of factor Xa to protect factor Va from inactivation by activated protein C. J. Biol. Chem. 257, 1443–1447.

    PubMed  CAS  Google Scholar 

  • Nesheim, M.E., Taswell, J.B., Mann, K.G., 1979. The contribution of bovine factor V and factor Va to the activity of prothrombinase. J. Biol. Chem. 254, 10952–10962.

    PubMed  CAS  Google Scholar 

  • Nicolaes, G.A., Tans, G., Thomassen, M.C., Hemker, H.C., Pabinger, I., Varadi, K., Schwarz, H.P., Rosing, J., 1995. Peptide bond cleavages and loss of functional activity during inactivation of factor Va and factor VaR506Q by activated protein C. J. Biol. Chem. 270, 21158–21166.

    Article  PubMed  CAS  Google Scholar 

  • St. Pierre, L., Masci, P.P., Filippovich, I., Sorokina, N., Marsh, N., Miller, D.J., Lavin, M.F., 2005. Comparative analysis of prothrombin activators from the venom of Australian elapids. Mol. Biol. Evol. 22, 1853–1864.

    Article  Google Scholar 

  • Pittman, D.D., Tomkinson, K.N., Michnick, D., Selighsohn, U., Kaufman, R.J., 1994. Posttranslational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry 33, 6952–6959.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V.S., Joseph, J.S., Kini, R.M., 2003a. Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. Biochem. J. 369, 635–642.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V.S., Kini, R.M., 2002. Pseutarin C, a prothrombin activator from Pseudonaja textilis venom: its structural and functional similarity to mammalian coagulation factor Xa-Va complex. Thromb. Haemost. 88, 611–619.

    PubMed  CAS  Google Scholar 

  • Rao, V.S., Swarup, S., Kini, R.M., 2003b. The non-enzymatic subunit of pseutarin C, a prothrombin activator from eastern brown snake (Pseudonaja textilis) venom, shows structural similarity to mammalian coagulation factor V. Blood 102, 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V.S., Swarup, S., Kini, R.M., 2004. The catalytic subunit of pseutarin C, a group C prothrombin activator from the venom of Pseudonaja textilis, is structurally similar to mammalian blood coagulation factor Xa. Thromb. Haemost. 92, 509–521.

    PubMed  CAS  Google Scholar 

  • Reza, M.A., Minh, L.T., Swarup, S., Kini, R.M., 2006. Molecular evolution caught in action: gene duplication and evolution of molecular isoforms of prothrombin activators in Pseudonaja textilis (brown snake). J. Thromb. Haemost. 4, 1346–1353.

    Article  PubMed  CAS  Google Scholar 

  • Reza, M.A., Swarup, S., Kini, R.M., 2005. Two parallel prothrombin activator systems in Australian rough-scaled snake, Tropidechis carinatus. Structural comparison of venom prothrombin activator with blood coagulation factor X. Thromb. Haemost. 93, 40–47.

    PubMed  CAS  Google Scholar 

  • Reza, M.A., Swarup, S., Kini, R.M., 2007. Structure of two genes encoding parallel prothrombin activators in Tropidechis carinatus snake: gene duplication and recruitment of factor X gene to the venom gland. J. Thromb. Haemost. 5, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Rosing, J., Tans, G., 1991. Inventory of exogenous prothrombin activators. For the subcommittee on nomenclature of exogenous hemostatic factors of the scientific and standardization committee of the international society on thrombosis and haemostasis. Thromb. Haemost. 65, 627–630.

    PubMed  CAS  Google Scholar 

  • Rosing, J., Tans, G., 1992. Structural and functional properties of snake venom prothrombin activators. Toxicon 30, 1515–1527.

    Article  PubMed  CAS  Google Scholar 

  • Schieck, A., Habermann, E., Kornalik, F., 1972. The prothrombin-activating principle from Echis carinatus venom. II. Coagulation studies in vitro and in vivo. Naunyn Schmiedebergs Arch. Pharmacol. 274, 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Silva, M.B., Schattner, M., Ramos, C.R., Junqueira-de-Azevedo, I.L., Guarnieri, M.C., Lazzari, M.A., Sampaio, C.A., Pozner, R.G., Ventura, J.S., Ho, P.L., Chudzinski-Tavassi, A.M., 2003. A prothrombin activator from Bothrops erythromelas (Jararaca-da-seca) snake venom: characterization and molecular cloning. Biochem. J. 369, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Speijer, H., Govers-Riemslag, J.W., Zwaal, R.F., Rosing, J., 1986. Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (Taipan snake). J. Biol. Chem. 261, 13258–13267.

    PubMed  CAS  Google Scholar 

  • Stenflo, J., Lundwall, A., Dahlback, B., 1987. beta-Hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Proc. Natl. Acad. Sci. U.S.A. 84, 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, K., Hauer, H., Muller, C., Triplett, D.A., 1994. Isolation and characterization of Textarin, a prothrombin activator from eastern brown snake (Pseudonaja textilis) venom. Toxicon 32, 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Dahlback, B., Stenflo, J., 1982. Thrombin-catalyzed activation of human coagulation factor V. J. Biol. Chem. 257, 6556–6564.

    PubMed  CAS  Google Scholar 

  • Tamiya, T., Fujimi, T.J., 2006. Molecular evolution of toxin genes in Elapidae snakes. Mol. Divers. 10, 529–543.

    Article  PubMed  CAS  Google Scholar 

  • Tans, G., Govers-Riemslag, J.W., van Rijn, J.L., Rosing, J., 1985. Purification and properties of a prothrombin activator from the venom of Notechis scutatus scutatus. J. Biol. Chem. 260, 9366–9372.

    PubMed  CAS  Google Scholar 

  • Thorelli, E., Kaufman, R.J., Dahlback, B., 1997. Cleavage requirements for activation of factor V by factor Xa. Eur. J. Biochem. 247, 12–20.

    Article  PubMed  CAS  Google Scholar 

  • van der Neut, K.M., Dirven, R.J., Vos, H.L., Tans, G., Rosing, J., Bertina, R.M., 2004. Factor Va is inactivated by activated protein C in the absence of cleavage sites at Arg-306, Arg-506, and Arg-679. J. Biol. Chem. 279, 6567–6575.

    Google Scholar 

  • van Drunen, C.M., Oosterling, R.W., Keultjes, G.M., Weisbeek, P.J., van Driel, R., Smeekens, S.C., 1997. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucl. Acids Res. 25, 3904–3911.

    Article  PubMed  Google Scholar 

  • Wang, C., Eufemi, M., Turano, C., Giartosio, A., 1996. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry 35, 7299–7307.

    Article  PubMed  CAS  Google Scholar 

  • Wilberding, J.A., Castellino, F.J., 2000. Characterization of the murine coagulation factor X promoter. Thromb. Haemost. 84, 1031–1038.

    PubMed  CAS  Google Scholar 

  • Xu, M., Hammer, R.E., Blasquez, V.C., Jones, S.L., Garrard, W.T., 1989. Immunoglobulin kappa gene expression after stable integration. II. Role of the intronic MAR and enhancer in transgenic mice. J. Biol. Chem. 264, 21190–21195.

    PubMed  CAS  Google Scholar 

  • Yamada, D., Morita, T., 1997. Purification and characterization of a Ca2+-dependent prothrombin activator, multactivase, from the venom of Echis multisquamatus. J. Biochem. (Tokyo) 122, 991–997.

    Article  CAS  Google Scholar 

  • Yamada, D., Sekiya, F., Morita, T., 1996. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J. Biol. Chem. 271, 5200–5207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abu Reza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reza, M.A., Kini, R.M. (2010). Origin and Evolution of Snake Venom Prothrombin Activators. In: Kini, R., Clemetson, K., Markland, F., McLane, M., Morita, T. (eds) Toxins and Hemostasis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9295-3_29

Download citation

Publish with us

Policies and ethics