Skip to main content

Anti-Angiogenesis and Disintegrins

  • Chapter
  • First Online:
Toxins and Hemostasis

Abstract

Angiogenesis is a critical process in tumor and disease progression. A number of features are central to both tumor growth and development, and the recruitment and invasion of a growing vascular network supplying the tumor with nutrients and a mechanism of escape to allow meastatic growth. One class of molecules important to both tumor growth and blood vessel recruitment are a family of cell surface receptors identified as integrins. Integrins are α/β heterodimeric glycoproteins in which the different α subunits combine with distinct β subunits resulting in a range of specificities toward various extracellular matrix (ECM) proteins. The RGD sequence found in a number of ECM proteins is recognized by several classes of integrins, allowing for linkage of cytoskeletal proteins associated with the integrins to the ECM which leads to involvement in bi-directional signaling that displays profound effects on cellular functions. Among these integrin mediated interactions are the adhesion of both endothelial cells and cancer cells to ECM proteins, an interaction that is integral to metastasis, tumor growth and angiogensis. Antibodies targeted to integrins have been shown to retard tumor growth and subsequent tumor induced angiogenesis. One concern with this approach is that the antibody targets a single integrin, which may allow the tumor to utilize other non-targeted integrins to circumvent this type of blockage. A more broad spectrum agent is available that binds to and blocks the function of several different integrins at a time, this agents is identified as a disintegrin. Originally purified from the venom of Viperidae family of snakes, a disintegrins role in nature is presumably to block platelet aggregation following envenomation based on interaction of an integrin on the activated platelet surface with an RGD sequence in the disintegrin. It has been observed that integrins overexpressed on some tumor types and angiogenic vasculature have similar affinity for RGD motifs found in ECM proteins. Based on disintegrin structure we have developed a recombinant form of a snake venom disintegrin, which we call vicrostatin (VCN). VCN is a potent anti-angiogenic/anti-tumor agent in in vitro and in vivo laboratory studies. Further development of the recombinant venom derived disintegrin along with new technology looking at additional disintegrin-like proteins may offer a novel therapeutic approach in targeting tumor induced angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, M., Lazarus, R.A., Dennis, M.S., Wagner, G., 1991. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 253, 445–448.

    Article  PubMed  CAS  Google Scholar 

  • Aragon-Ching, J.B., Dahut, W.L., 2008. The role of angiogenesis inhibitors in prostate cancer. Cancer. J. 14, 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Aragon-Ching, J.B., Dahut, W.L., 2009. VEGF inhibitors and prostate cancer therapy. Curr. Mol. Pharmacol. 2, 161–168.

    PubMed  CAS  Google Scholar 

  • Banno, A., Ginsberg, M.H., 2008. Integrin activation. Biochem. Soc. Trans. 36, 229–34.

    Article  PubMed  CAS  Google Scholar 

  • Bayless, K.J., Salazar, R., Davis, G.E., 2000. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins. Am. J. Pathol. 156, 1673–1683.

    Article  PubMed  CAS  Google Scholar 

  • Beekman, K.W., Colevas, A.D., Cooney, K., Dipaola, R., Dunn, R.L., Gross, M., Keller, E.T., Pienta, K.J., Ryan, C.J., Smith, D., Hussain, M., 2006. Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin. Genitourin. Cancer 4, 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Beekman, K.W., Hussain, M., 2006. Targeted approaches for the management of metastatic prostate cancer. Curr. Oncol. Rep. 8, 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Boehm, T., Folkman, J., Browder, T., O’Reilly, M.S., 1997. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., Cheresh, D.A., 1994. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.C., Eble, J.A., Calvete, J.J., Marcinkiewicz, C., 2009. Structural requirements of KTS-disintegrins for inhibition of α1β1 integrin. Biochem. J. 417, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, D.A., 2004. Talin controls integrin activation. Biochem. Soc. Trans. 32, 434–437.

    Article  PubMed  CAS  Google Scholar 

  • Calvete, J.J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., Sanz, L., 2005. Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063–1074.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.X., Cleck, J.N., 2009. Adverse effects of anticancer agents that target the VEGF pathway. Nat. Rev. Clin. Oncol. 6, 465–477.

    Article  PubMed  CAS  Google Scholar 

  • Cheresh, D.A., 1992. Structural and biologic properties of integrin-mediated cell adhesion. Clin. Lab. Med. 12, 217–236.

    PubMed  CAS  Google Scholar 

  • Choueiri, T.K., Duh, M.S., Clement, J., Brick, A.J., Rogers, M.J., Kwabi, C., Shah, K., Percy, A. G., Antras, L., Jayawant, S.S., Chen, K., Wang, S.T., Luka, A., Neary, M.P., McDermott, D., Oh, W.K., 2009. Angiogenesis inhibitor therapies for metastatic renal cell carcinoma: effectiveness, safety and treatment patterns in clinical practice-based on medical chart review. BJU Int. 105(9), 1247–1254.

    Google Scholar 

  • Choy, M., Rafii, S., 2001. Role of angiogenesis in the progression and treatment of prostate cancer. Cancer Invest. 19, 181–91.

    Article  PubMed  CAS  Google Scholar 

  • Concato, J., Jain, D., Uchio, E., Risch, H., Li, W.W., Wells, C.K., 2009. Molecular markers and death from prostate cancer. Ann. Intern. Med. 150, 595–603.

    Article  PubMed  Google Scholar 

  • Cooper, C.R., Chay, C.H., Pienta, K.J., 2002. The role of αvβ3 in prostate cancer progression. Neoplasia 4, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Courtney, K.D., Choueiri, T.K., 2009. Optimizing recent advances in metastatic renal cell carcinoma. Curr. Oncol. Rep. 11, 218–226.

    Article  PubMed  CAS  Google Scholar 

  • Cousins, G.R., Sudo, Y., Friedrichs, G.R., Markland, F.S., Lucchesi, B.R., 1995. Contortrostatin prevents reocclusion after thrombolytic therapy in a canine model of carotid artery thrombosis. FASEB J. 9, A938.

    Google Scholar 

  • Cox, M.C., Permenter, M., Figg, W.D., 2005. Angiogenesis and prostate cancer: important laboratory and clinical findings. Curr. Oncol. Rep. 7, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Cress, A.E., Rabinovitz, I., Zhu, W., Nagle, R.B., 1995. The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev. 14, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Demirgoz, D., Garg, A., Kokkoli, E., 2008. PR_b-targeted PEGylated liposomes for prostate cancer therapy. Langmuir 24, 13518–13524.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, M.S., Henzel, W.J., Pitti, R.M., Lipari, M.T., Napier, M.A., Deisher, T.A., Bunting, S., Lazarus, R.A., 1990. Platelet glycoprotein IIb/IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc. Natl. Acad. Sci. U.S.A. 87, 2471–2475.

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo, G., De Placido, S., 2006. Hormone refractory prostate cancer (HRPC): present and future approaches of therapy. Int. J. Immunopathol. Pharmacol. 19, 11–34.

    PubMed  Google Scholar 

  • Ebos, J.M., Lee, C.R., Cruz-Munoz, W., Bjarnason, G.A., Christensen, J.G., Kerbel, R.S., 2009. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239.

    Article  PubMed  CAS  Google Scholar 

  • Erbersdobler, A., Isbarn, H., Dix, K., Steiner, I., Schlomm, T., Mirlacher, M., Sauter, G., Haese, A., 2009. Prognostic value of microvessel density in prostate cancer: a tissue microarray study. World J. Urol. In Press

    Google Scholar 

  • Fox, W.D., Higgins, B., Maiese, K.M., Drobnjak, M., Cordon-Cardo, C., Scher, H.I., Agus, D.B., 2002. Antibody to vascular endothelial growth factor slows growth of an androgen-independent xenograft model of prostate cancer. Clin. Cancer Res. 8, 3226–3231.

    PubMed  CAS  Google Scholar 

  • Friedlander, M., Brooks, P.C., Shaffer, R.W., Kincaid, C.M., Varner, J.A., Cheresh, D.A., 1995. Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, G., 1996. Liposomal amphotericin B(AmBisome): realization of the drug delivery concept, in: Rosoff, M. (Ed.), Vesicles. Marcel Dekker, New York, pp. 491–526.

    Google Scholar 

  • Fujii, Y., Okuda, D., Fujimoto, Z., Horii, K., Morita, T., Mizuno, H., 2003. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J. Mol. Biol. 332, 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Garrison, J.B., Kyprianou, N., 2004. Novel targeting of apoptosis pathways for prostate cancer therapy. Curr. Cancer Drug Targets 4, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini, G., Brooks, P.C., Biganzoli, E., Vermeulen, P.B., Bonoldi, E., Dirix, L.Y., Ranieri, G., Miceli, R., Cheresh, D.A., 1998. Vascular integrin αvβ3: a new prognostic indicator in breast cancer. Clin. Cancer. Res. 4, 2625–2634.

    PubMed  CAS  Google Scholar 

  • Gleave, M., Miyake, H., Chi, K., 2005. Beyond simple castration: targeting the molecular basis of treatment resistance in advanced prostate cancer. Cancer Chemother. Pharmacol. 56 Suppl 1, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Goel, H.L., Li, J., Kogan, S., Languino, L.R., 2008. Integrins in prostate cancer progression. Endocr. Relat. Cancer 15, 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Golubkov, V., Hawes, D., Markland, F.S., 2003. Anti-angiogenic activity of contortrostatin, a disintegrin from Agkistrodon contortrix contortrix snake venom. Angiogenesis 6, 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., Niewiarowski, S., 1990. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc. Soc. Exptl. Biol. Med. 195, 168–171.

    CAS  Google Scholar 

  • Grothey, A., Galanis, E., 2009. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol. 6, 507–518.

    Article  PubMed  CAS  Google Scholar 

  • Gutheil, J.C., Campbel, T.N., Pierce, P.R., Watkins, J.D., Huse, W.D., Bodkin, D.J., Cheresh, D.A., 2000. Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res. 6, 3056–3061.

    PubMed  CAS  Google Scholar 

  • Harris, W.P., Mostaghel, E.A., Nelson, P.S., Montgomery, B., 2009. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Hiles, J.J., Kolesar, J.M., 2008. Role of sunitinib and sorafenib in the treatment of metastatic renal cell carcinoma. Am. J. Health Syst. Pharm. 65, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Hood, J.D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R.A., Xiang, R., Cheresh, D.A., 2002. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T.F., Holt, J.C., Kirby, E.R., Niewiarowski, S., 1989. Trigramin: primary structure and its inhibition of von willebrand factor binding to glycoprotein IIb-IIIa complex on human platelets. Biochemistry 28, 661–666.

    Article  PubMed  CAS  Google Scholar 

  • Humphries, M.J., 1996. Integrin activation: the link between ligand binding and signal transduction. Curr. Opin. Cell Biol. 8, 632–640.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O., 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Jameson, D.M., Seifried, S.E., 1999. Quantification of protein–protein interactions using fluorescence polarization. Methods 19, 222–233.

    Article  PubMed  CAS  Google Scholar 

  • Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.J., 2009. Cancer statistics, 2009. CA. Cancer J. Clin. 59, 225–249.

    Article  Google Scholar 

  • Jimenez, J.A., Kao, C., Raikwar, S., Gardner, T.A., 2006. Current status of anti-angiogenesis therapy for prostate cancer. Urol. Oncol. 24, 260–268.

    Article  PubMed  CAS  Google Scholar 

  • Kerbel, R.S., 2001a. Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results. J. Clin. Oncol. 19, 45S–51S.

    PubMed  CAS  Google Scholar 

  • Kerbel, R. S., 2001b. Molecular and physiologic mechanisms of drug resistance in cancer: an overview. Cancer Metastasis Rev. 20, 1–2.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, C.C., 2003. Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr. Drug. Targets. 4, 123–311.

    Article  PubMed  CAS  Google Scholar 

  • Kwabi-Addo, B., Ozen, M., Ittmann, M., 2004. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr. Relat. Cancer 11, 709–724.

    Article  PubMed  CAS  Google Scholar 

  • Liotta, L.A., Kohn, E.C., 2001. The microenvironment of the tumour-host interface. Nature 411, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Madan, R.A., Dahut, W.L., 2009. Angiogenesis inhibition in the treatment of prostate cancer. Anticancer Agents Med. Chem. 27, 5627–5633.

    Google Scholar 

  • Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., Niewiarowski, S., 1997. Significance of RGD loop and C-terminal domain of echistatin for recognition of αIIbβ3 and αvβ3 integrins and expression of ligand-induced binding site. Blood 90, 1565–1575.

    PubMed  CAS  Google Scholar 

  • Markland, F.S., Shieh, K., Zhou, Q., Golubkov, V., Sherwin, R.P., Richters, V., Sposto, R., 2001. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 31, 183–191.

    PubMed  CAS  Google Scholar 

  • McLane, M.A., Joerger, T., Mahmoud, A., 2008. Disintegrins in health and disease. Front. Biosci. 13, 6617–6637.

    Article  PubMed  CAS  Google Scholar 

  • McLane, M.A., Marcinkiewicz, C., Vijay-Kumar, S., Wierzbicka-Patynowski, I., Niewiarowski, S., 1998. Viper venom disintegrins and related molecules. Proc. Soc. Exp. Biol. Med. 219, 109–119.

    PubMed  CAS  Google Scholar 

  • Merseburger, A.S., Simon, A., Waalkes, S., Kuczyk, M.A., 2009. Sorafenib reveals efficacy in sequential treatment of metastatic renal cell cancer. Expert Rev. Anticancer Ther. 9, 1429–1434.

    Article  PubMed  CAS  Google Scholar 

  • Minea, R., Swenson, S., Costa, F., Chen, T.C., Markland, F.S., 2005. Development of a novel recombinant disintegrin, contortrostatin, as an effective anti-tumor and anti-angiogenic agent. Pathophysiol. Haemost. Thromb. 34, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Montagnani, F., Migali, C., Fiorentini, G., 2009. Progression-free survival in bevacizumab-based first-line treatment for patients with metastatic colorectal cancer: is it a really good end point? J. Clin. Oncol. 27, e132–e133; author reply e134–e135.

    Article  PubMed  Google Scholar 

  • Mucci, L.A., Powolny, A., Giovannucci, E., Liao, Z., Kenfield, S.A., Shen, R., Stampfer, M.J., Clinton, S.K., 2009. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J. Clin. Oncol. 9, 1070–1078.

    Google Scholar 

  • Nemeth, J.A., Cher, M.L., Zhou, Z., Mullins, C., Bhagat, S., Trikha, M., 2003. Inhibition of αvβ3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin. Exp. Metastasis 20, 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Niewiarowski, S., McLane, M.A., Kloczewiak, M., Stewart, G.J., 1994. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin. Hematol. 31, 289–300.

    PubMed  CAS  Google Scholar 

  • Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Bergers, G., Hanahan, D., Casanovas, O., 2009. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231.

    Article  PubMed  CAS  Google Scholar 

  • Pallares, J., Rojo, F., Iriarte, J., Morote, J., Armadans, L.I., de Torres, I., 2006. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol. Histopathol. 21, 857–865.

    PubMed  CAS  Google Scholar 

  • Phillips, D.R., Charo, I.F., Scarborough, R.M., 1991. GP IIb-IIIa: the responsive integrin. Cell 65, 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli, M., Cardillo, M.R., Hanby, A., Stamp, G.W., 1992. Integrins and their accessory adhesion molecules in mammary carcinomas: loss of polarization in poorly differentiated tumors. Human Pathol. 23, 1159–1166.

    Article  CAS  Google Scholar 

  • Pinski, J., Markland, F., Wang, Q., Horiatis, D., Swenson, S., Costa, F. (2003). A novel therapy for prostate cancer based on the disintegrin contortrostatin. ASCO Annual Meeting. Chicago, IL.

    Google Scholar 

  • Polnaszek, N., Kwabi-Addo, B., Peterson, L.E., Ozen, M., Greenberg, N.M., Ortega, S., Basilico, C., Ittmann, M., 2003. Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res. 63, 5754–5760.

    PubMed  CAS  Google Scholar 

  • Pyrko, P., Wang, W., Markland, F.S., Swenson, S.D., Schmitmeier, S., Schonthal, A.H., Chen, T.C., 2005. The role of contortrostatin, a snake venom disintegrin, in the inhibition of tumor progression and prolongation of survival in a rodent glioma model. J. Neurosurg. 103, 526–537.

    Article  PubMed  CAS  Google Scholar 

  • Ranieri, G., Patruno, R., Ruggieri, E., Montemurro, S., Valerio, P., Ribatti, D., 2006. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem. 13, 1845–1857.

    Article  PubMed  CAS  Google Scholar 

  • Reardon, D.A., Fink, K.L., Mikkelsen, T., Cloughesy, T.F., O’Neill, A., Plotkin, S., Glantz, M., Ravin, P., Raizer, J.J., Rich, K.M., Schiff, D., Shapiro, W.R., Burdette-Radoux, S., Dropcho, E.J., Wittemer, S.M., Nippgen, J., Picard, M., Nabors, L.B., 2008. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 26, 5610–5617.

    Article  PubMed  CAS  Google Scholar 

  • Romanov, V.I., Goligorsky, M.S., 1999. RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate 39, 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E., 1991. Integrins. J. Clin. Invest. 87, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Sanz, L., Chen, R.Q., Perez, A., Hilario, R., Juarez, P., Marcinkiewicz, C., Monleon, D., Celda, B., Xiong, Y.L., Perez-Paya, E., Calvete, J.J., 2005. cDNA cloning and functional expression of jerdostatin, a novel RTS-disintegrin from Trimeresurus jerdonii and a specific antagonist of the α1β1 integrin. J. Biol. Chem. 280, 40714–40722.

    Article  PubMed  CAS  Google Scholar 

  • Saudek, V., Atkinson, R.A., Lepage, P., Pelton, J.T., 1991. The secondary structure of echistatin from 1H-NMR. Eur. J. Biochem. 202, 329–338.

    Article  PubMed  CAS  Google Scholar 

  • Scarborough, R.M., Rose, J.W., Naughton, M.A., Phillips, D.R., Nannizzi, L., Arfsten, A., Campbell, A.M., Charo, I.F., 1993. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J. Biol. Chem. 268, 1058–1065.

    PubMed  CAS  Google Scholar 

  • Sharifi, N., Dahut, W.L., Figg, W.D., 2008. The genetics of castration-resistant prostate cancer: what can the germline tell us? Clin. Cancer Res. 14, 4691–4693.

    Article  PubMed  CAS  Google Scholar 

  • Shebuski, R.J., Ramjit, D.R., Bencen, G.H., Polokoff, M.A., 1989. Characterization and platelet inhibitor activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of viper Bitis arietans. J. Biol. Chem. 264, 21550–21556.

    PubMed  CAS  Google Scholar 

  • Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parry, G.C., Parikh, A.A., McCarty, M.F., Bucana, C.D., Mazar, A.P., Ellis, L.M., 2003. Inhibition of integrin α5β1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int. J. Cancer 104, 496–503.

    Article  PubMed  CAS  Google Scholar 

  • Strohmeyer, D., Strauss, F., Rossing, C., Roberts, C., Kaufmann, O., Bartsch, G., Effert, P., 2004. Expression of bFGF, VEGF and c-met and their correlation with microvessel density and progression in prostate carcinoma. Anticancer Res. 24, 1797–1804.

    PubMed  CAS  Google Scholar 

  • Strömblad, S., Becker, J.C., Yebra, M., Brooks, P.C., Cheresh, D. A., 1996. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αvβ3 during angiogenesis. J. Clin. Invest. 98, 426–433.

    Article  PubMed  Google Scholar 

  • Sun, X.T., Ding, Y.T., Yan, X.G., Wu, L.Y., Li, Q., Cheng, N., Qiu, Y.D., Zhang, M.Y., 2004. Angiogenic synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in an in vitro quantitative microcarrier-based three-dimensional fibrin angiogenesis system. World J. Gastroenterol. 10, 2524–2528.

    PubMed  CAS  Google Scholar 

  • Sun, Y.X., Fang, M., Wang, J., Cooper, C.R., Pienta, K.J., Taichman, R.S., 2007. Expression and activation of αvβ3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67, 61–73.

    Article  PubMed  CAS  Google Scholar 

  • Swenson, S., Costa, F., Minea, R., Sherwin, R.P., Ernst, W., Fujii, G., Yang, D., Markland, F.S., Jr., 2004. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol. Cancer. Ther. 3, 499–511.

    PubMed  CAS  Google Scholar 

  • Trikha, M., De Clerck, Y.A., Markland, F.S., 1994a. Contortrostatin, a snake venom disintegrin, inhibits β1 integrin-mediated human metastatic melanoma cell adhesion and blocks experimental metastasis. Cancer Res. 54, 4993–4998.

    PubMed  CAS  Google Scholar 

  • Trikha, M., Rote, W.E., Manley, P.J., Lucchesi, B.R., Markland, F.S., 1994b. Purification and characterization of platelet aggregation inhibitors from snake venoms. Thromb. Res. 73, 39–52.

    Article  PubMed  CAS  Google Scholar 

  • van Moorselaar, R.J., Voest, E.E., 2002. Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol. Cell. Endocrinol. 197, 239–250.

    Article  PubMed  Google Scholar 

  • Weidner, N., Carroll, P.R., Flax, J., Blumenfeld, W., Folkman, J., 1993. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409.

    PubMed  CAS  Google Scholar 

  • Witkowski, C.M., Rabinovitz, I., Nagle, R.B., Affinito, K.S., Cress, A.E., 1993. Characterization of integrin subunits, cellular adhesion and tumorgenicity of four human prostate cell lines. J. Cancer. Res. Clin. Oncol. 119, 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Woodle, M.C., 1993. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem. Phys. Lipids 64, 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Wu, I., Moses, M.A., 2000. Angiogenic molecules and mechanisms in breast cancer. Curr. Oncol. Rep. 2, 566–571.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, J.P., Stehle, T., Goodman, S.L., Arnaout, M.A., 2003. New insights into the structural basis of integrin activation. Blood 102, 1155–1159.

    Article  PubMed  CAS  Google Scholar 

  • Yahalom, D., Wittelsberger, A., Mierke, D.F., Rosenblatt, M., Alexander, J.M., Chorev, M., 2002. Identification of the principal binding site for RGD-containing ligands in the αvβ3 integrin: a photoaffinity cross-linking study. Biochemistry 41, 8321–8331.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, T., Gold, H.K., Leinbach, R.C., Yaoita, H., Fallon, J.T., Guerrero, L., Napier, M.A., Bunting, S., Collen, D., 1991. Kistrin, a polypeptide platelet GPIIb/IIIa receptor antagonist, enhances and sustains coronary arterial thrombolysis with recombinant tissue-type plasminogen activator in a canine preparation. Circulation 83, 1038–1047.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, D.Q., Woodard, A.S., Fornaro, M., Tallini, G., Languino, L.R., 1999. Prostatic carcinoma cell migration via αvβ3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res. 59, 1655–1664.

    PubMed  CAS  Google Scholar 

  • Zhou, Q., Nakada, M.T., Arnold, C., Markland, F.S., 1999. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis 3, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Nakada, M.T., Brooks, P.C., Swenson, S.D., Ritter, M.R., Argounova, S., Arnold, C., Markland, F.S., 2000a. Contortrostatin, a homodimeric disintegrin, binds to integrin αvβ5. Biochem. Biophys. Res. Commun. 267, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Sherwin, R.P., Parrish, C., Richters, V., Groshen, S.G., Tsao-Wei, D., Markland, F.S., 2000b. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Res. Treat. 61, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, A.X., Duda, D.G., Sahani, D.V., Jain, R.K., 2009. Development of sunitinib in hepatocellular carcinoma: rationale, early clinical experience, and correlative studies. Cancer J. 15, 263–268.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lesley Rakowski, Kyle Brodmann and Barbra Rubino for technical assistance. In addition the authors would like to acknowledge grant support from; National Institutes of Health (FM, 1R41 CA126001-01A1 and 1R41 CA121452-01A1), California Breast Cancer Research Program (SS, 12IB-0153) and Komen for the Cure (FM, BCTR0707423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Swenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Swenson, S., Minea, R., Zidovetzki, S., Helchowski, C., Costa, F., Markland, F.S. (2010). Anti-Angiogenesis and Disintegrins. In: Kini, R., Clemetson, K., Markland, F., McLane, M., Morita, T. (eds) Toxins and Hemostasis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9295-3_19

Download citation

Publish with us

Policies and ethics