Skip to main content

Acoustic Methods Overview

  • Chapter
  • First Online:
Coral Reef Remote Sensing

Abstract

Acoustic methods are widely used for the production of physical, environmental and biological data required for the responsible management of marine resources, such as coral reefs. Here, we review the basic physical properties of sound in water that can be harnessed for active or passive acoustic remote sensing systems. Sound, by assessing the return characteristics of emitted sound waves, can be used to derive information on seafloor topography via depth (obtained by measuring travel time), on seafloor makeup (obtained by measuring backscatter intensity), or on water column characteristics (obtained by measuring Doppler shifts). Sound is also used to track organisms such as fish or even to create images by harnessing natural sound sources to “illuminate” objects like fish. Acoustic methods have a place in the toolbox of every coral reef manager.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Jackson DR, Richardson MD (2010) High-frequency seafloor acoustics. Springer, New York

    Google Scholar 

  • Jones EJW (1999) Marine geophysics, 5th edn. Wiley, New York

    Google Scholar 

  • Lurton X (2010) An introduction to underwater acoustics. Springer, Berlin

    Book  Google Scholar 

  • Medwin H, Clay CS (1998) Fundamentals of acoustical oceanography. Academic, London

    Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. McGraw Hill, New York

    Google Scholar 

  • Wille PC (2005) Sound images of the ocean. Springer, Berlin

    Google Scholar 

References

  • Benenson W, Harris JW, Stocker H, Lutz H (2002) Handbook of physics. Springer, Newyork, p 1181

    Google Scholar 

  • Buckingham MJ, Berkhout BV, Glegg SAL (1992) Imaging the ocean with ambient noise. Nature 356:327–329

    Article  Google Scholar 

  • Buckingham MJ, Potter JR, Epifanio CL (1996) Seeing under water with background noise. Sci Am 274:40–44

    Article  Google Scholar 

  • Chen C-T, Millero FJ (1977) Speed of sound in seawater at high pressures. J Acoust Soc Am 62:1129–1135

    Article  Google Scholar 

  • Chilowsky C, Langevin P (1916) Procedes et appareils pour la production de signaux sous-marins diriges et pour la localization a distance d’obstacles sous-marins. Brevet francais 502913

    Google Scholar 

  • Clay CS, Horne JK (1994) Acoustic models of fish: the Atlantic cod (Gadus morhua). J Acoust Soc Am 96:1661–1668

    Article  Google Scholar 

  • Colladon JD, Sturm JKF (1827) Speed of sound in liquids. Ann Chim Phys Ser 2, part IV

    Google Scholar 

  • Hoitink AJF, Hoekstra P (2005) Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coast Eng 52(2):103–118

    Article  Google Scholar 

  • Johnston SV, Rivera JA, Rosario A, Timko MA, Nealson PA, Kumagai KK (2006) Hydroacoustic evaluation of spawning red hind (Epinephelus guttatus) aggregations along the coast of Puerto Rico in 2002 and 2003. NOAA Prof Pap NMFS (5). NOAA, Seattle, WA, pp 10–17

    Google Scholar 

  • Jones EJW (1999) Marine geophysics, 5th edn. Wiley, New York

    Google Scholar 

  • Medwin H, Clay CS (1998) Fundamentals of acoustical oceanography. Academic, London

    Google Scholar 

  • Nakken O, Olsen K (1977) Target strength measurements of fish. Rapp P-V Reun Cons Int Expl Mers 170:52–69

    Google Scholar 

  • Purkis SJ, Klemas V (2011) Remote sensing and global environmental change. Wiley-Blackwell, Oxford, p 368

    Google Scholar 

  • Sun Y, Nash R, Clay CS (1985) Acoustic measurements of the anatomy of fish at 220 kHz. J Acoust Soc Am 78:1772–1776

    Article  Google Scholar 

  • Tolstoy I, Clay CS (1966) Ocean acoustics. Theory and experiment in underwater sound. McGraw Hill, NY, p 293

    Google Scholar 

  • Wilson WD (1960) Speed of sound in sea water as a function of temperature, pressure, and salinity. J Acoust Soc Am 32(6):641–644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Riegl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riegl, B., Guarin, H. (2013). Acoustic Methods Overview. In: Goodman, J., Purkis, S., Phinn, S. (eds) Coral Reef Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9292-2_8

Download citation

Publish with us

Policies and ethics