Skip to main content

LiDAR Applications

  • Chapter
  • First Online:

Abstract

Coral reef ecosystems exhibit biotic complexity and spatial heterogeneity in physical structure at multiple spatial scales. The recent application of LiDAR technology to coral reef ecosystems has vastly improved the mapping and quantification of these physically complex ecological systems. Understanding the geomorphology of coral reefs, from a three-dimensional perspective, using LiDAR, offers great potential to advance our knowledge of the functional linkages between geomorphic structure and ecological processes in the marine environment. The recent application of LiDAR in coral reef ecosystems also demonstrates the depth and breadth of the potential for this technology to support research and mapping efforts in the coastal zone. This chapter builds upon the previous one, which covered the background and principles of LiDAR altimetry, by reviewing coral reef LiDAR applications and providing several case studies that highlight the utility of this technology. The application of LiDAR for navigational charting, engineering, benthic habitat mapping, ecological modeling, marine geology and environmental change detection are presented. The future directions of LiDAR applications are considered in the conclusion of this chapter, as well as the next steps for expanding the use of this remote sensing technology in coral reef environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Suggested Reading

  • Brock JC, Purkis SJ (2009) The emerging role of LiDAR remote sensing in coastal research and resource management. J Coast Res SI 53:1–5

    Article  Google Scholar 

  • Conger CL, Fletcher CH, Hochberg EH, Frazer N, Rooney J (2009) Remote sensing of sand distribution patterns across an insular shelf: Oahu, Hawaii. Mar Geo 267:175–190

    Article  Google Scholar 

  • Costa BM, Battista TA, Pittman SJ (2009) Comparative evaluation of airborne LiDAR and ship-based multibeam sonar bathymetry and intensity for mapping coral reef ecosystems. Remote Sens Environ 113:1082–1100

    Article  Google Scholar 

  • Pittman SJ, Costa BM, Battista TA (2009) Using LiDAR bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J Coast Res 53(SI):27–38

    Google Scholar 

  • Pittman SJ, Brown KA (2011) Multiscale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE 6(5):e20583. doi:10.1371/journal.pone.0020583

    Article  Google Scholar 

  • Storlazzi CD, Logan JB, Field ME (2003) Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry: Southern Molokai, Hawaii. Geol Soc Am Bull 115:1344

    Article  Google Scholar 

References

  • Alvarez-Filip L, Dulvy NK, Gill JA, Cote IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc Roy Soc Ser B 276:3019–3025

    Article  Google Scholar 

  • Baker WE, Emmitt GD, Robertson F, Atlas RM, Molinari JE, Bowdle DA, Paegle J, Hardesty M, Menzies RT, Krishnamurti TN, Brown RA, Post MJ, Anderson JR, Lorenc AA, McElroy J (1995) LiDAR-measured winds from space: a key component for weather and climate prediction. Bull Am Meteorol Soc 76(6):869–888

    Article  Google Scholar 

  • Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogrammetry Remote Sens 54:214–1999

    Google Scholar 

  • Banks KW, Riegl BM, Shinn EA, Piller WE, Dodge RE (2007) Geomorphology of the Southeast Florida continental reef tract (Miami-Dade, Broward, and Palm Beach Counties, USA). Coral Reefs 26:617–633

    Article  Google Scholar 

  • Brock JC, Wright WC, Clayton TD, Nayegandhi A (2004) LiDAR optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs 23:48–59

    Article  Google Scholar 

  • Brock JC, Wright CW, Kuffner IB, Hernandez R, Thompson P (2006) Airborne LiDAR sensing of massive stony coral colonies on patch reefs in the Northern Florida reef tract. Remote Sens Environ 104:31–42

    Article  Google Scholar 

  • Brock J, Palaseanu-Lovejoy M, Wright CW, Nayegandhi A (2008) Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA. Coral Reefs 27:555–568

    Article  Google Scholar 

  • Brock JC, Purkis SJ (2009) The emerging role of LiDAR remote sensing in coastal research and resource management. J Coast Res SI 53:1–5

    Article  Google Scholar 

  • Brown BE, Suharsono (1990) Damage and recovery of coral reefs affected by El Nino related seawater warming in the Thousand Islands, Indonesia. Coral Reefs 8:163–170

    Article  Google Scholar 

  • Chust G, Galparsoro I, Borja Á, Franco J, Uriarte A (2008) Coastal and estuarine habitat mapping, using LiDAR height and intensity and multi-spectral imagery. Estuar Coast Shelf Sci 78:633–643

    Article  Google Scholar 

  • Chust G, Grande M, Galparsoro I, Uriarte A, Borja A (2010) Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: a case study within a Basque estuary. Estuar Coast Shelf Sci 89(3):200–213

    Article  Google Scholar 

  • Cochran-Marquez SA (2005) Moloka’i benthic habitat mapping. US geological survey open file report 2005-1070. Available online: http://pubs.usgs.gov/of/2005/1070/index.html. Visited 27 Sep 2010

  • Conger CL, Hochberg EJ, Fletcher CH, Atkinson MJ (2006) Decorrelating remote sensing color bands from bathymetry in optically shallow waters. Trans Geosci Remote Sens 44(6):1655–1660

    Article  Google Scholar 

  • Conger CL, Fletcher CH, Barbee M (2009a) Artificial neural network classification of sand in all visible submarine and subaerial regions of a digital image. J Coastal Res 21(6):1173–1177

    Google Scholar 

  • Conger CL, Fletcher CH, Hochberg EH, Frazer N, Rooney J (2009b) Remote sensing of sand distribution patterns across an insular shelf: Oahu, Hawaii. Mar Geol 267:175–190

    Article  Google Scholar 

  • Costa BM, Battista TA, Pittman SJ (2009) Comparative evaluation of airborne LiDAR and ship-based multibeam sonar bathymetry and intensity for mapping coral reef ecosystems. Remote Sens Environ 113:1082–1100

    Article  Google Scholar 

  • Douvere F (2008) The importance of marine spatial planning in advancing ecosystem-based sea use management. Mar Policy 32:762–771

    Article  Google Scholar 

  • Engel-Cox JA, Hoff RM, Rogers R, Dimmick F, Rush AC, Szykman JJ, Al-Saadi J, Chu DA, Zell ER (2006) Integrating LiDAR and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmos Environ 40:8056–8067

    Article  Google Scholar 

  • Field ME, Logan JB, Chavez Jr PS, Storlazzi CD, Cochran SA (2008) Views of the South Moloka’i Watershed-to-Reef System. In: Field ME, Cochran SA, Logan JB, Storlazzi CD (eds) The coral reef of South Moloka‘i, Hawai‘i: portrait of a sediment-threatened fringing reef. U.S. Geological survey scientific investigation report 2007-5101, pp 17–32

    Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2005) Submarine geomorphology of the continental shelf off Southeast Florida based on interpretation of airborne laser bathymetry. J Coastal Res 21:1178–1190

    Article  Google Scholar 

  • Finkl CW, Becerra JE, Achatz V, Andrews JL (2008) Geomorphological mapping along the Upper Southeast Florida Atlantic Continental Platform. J Coastal Res 1388–1417

    Google Scholar 

  • Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30

    Article  Google Scholar 

  • Friedlander A, Sladek-Nowlis J, Sanchez JA, Appeldoorn R, Usseglio P, McCormick C, Bejarno S, Mitchel-Chui A (2003) Designing effective marine protected areas in Seaflower Biosphere Reserve, Columbia, based on biological and sociological information. Conserv Biol 17:1–16

    Article  Google Scholar 

  • Friedlander AM, Brown E, Monaco ME, Clark A (2006) Fish habitat utilization patterns and evaluation of the efficacy of marine protected areas in Hawaii: integration of NOAA digital benthic habitat mapping and coral reef ecological studies. NOAA Technical Memorandum NOS NCCOS 23:217

    Google Scholar 

  • Friedlander AM, Brown E, Monaco ME (2007a) Defining reef fish habitat utilization patterns in Hawaii: comparisons between marine protected areas and areas open to fishing. Mar Ecol Prog Ser 351:221–233

    Article  Google Scholar 

  • Friedlander AM, Brown EK, Monaco ME (2007b) Coupling ecology and GIS to evaluate efficacy of marine protected areas in Hawaii. Ecol Appl 17:715–730

    Article  Google Scholar 

  • Friedlander AM, Wedding LM, Brown E, Monaco ME (2010) Monitoring Hawaii’s marine protected areas: examining spatial and temporal trends using a seascape approach. NOAA Technical Memorandum NOS NCCOS 117. Prepared by the NCCOS Center for Coastal Monitoring and Assessment’s Biogeography Branch. Silver Spring, MD, p 130

    Google Scholar 

  • Fugro LADS (2010) Capabilities: nautical charts, oil and gas, coastal management, climate change and seabed classification. Available online: www.fugrolads.com/capabilities.htm. Visited 22 Sep 2010

  • Gardner TA , Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301(5635):958–960

    Article  Google Scholar 

  • Gentry BM, Chen H, Li SX (2000) Wind measurements with 355-nm molecular Doppler LiDAR. Opt Lett 25(17):1231–1233

    Article  Google Scholar 

  • Gesch DB (2009) Analysis of LiDAR elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J Coastal Res 10053:49–58

    Google Scholar 

  • González FI, Titov VV, Mofjeld HO, Venturato AJ, Simmons RS, Hansen R, Combellick R, Eisner RK, Hoirup DF, Yanagi BS, Yong S, Darienzo M, Priest GR, Crawford GL, Walsh TJ (2005) Progress in NTHMP hazard assessment. Nat Hazards 35(1):89–110

    Article  Google Scholar 

  • Grigg RW (1982) Darwin point: a threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  • Grigg RW (1998) Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17:263–272

    Article  Google Scholar 

  • Hamilton EL, Bachman RT (1982) Sound velocity and related properties of marine sediments. J Acoust Soc Am 72(6):1891–1904

    Article  Google Scholar 

  • Hearn CJ, Atkinson MJ, Falter JL (2001) A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves. Coral Reefs 20:347–356

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737

    Google Scholar 

  • IHO (International Hydrographic Organization) (2008) IHO standards for hydrographic surveys: special publication, vol 44, 5th edn. International Hydrographic Bureau, Monaco, France, pp 1–36

    Google Scholar 

  • Irish JL, White TE (1998) Coastal engineering applications of high-resolution LiDAR bathymetry. Coast Eng 35(1–2):47–71

    Article  Google Scholar 

  • Irish JL, Lillycrop WJ (1999) Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogrammetry Remote Sens 54:123–129

    Article  Google Scholar 

  • Irish JL, McClung JK, Lillycrop WJ (2000) Airborne LiDAR bathymetry: the SHOALS system. Int Navig Assoc PIANC Bull 103:43–53

    Google Scholar 

  • Jordan A, Lawler M, Halley V, Barrett N (2005) Seabed habitat mapping in the Kent Group of islands and its role in marine protected area planning. Aquat Conserv Mar Freshw Ecosyst 15:51–70

    Article  Google Scholar 

  • Lee M (2003) Benthic mapping of coastal waters using data fusion of hyperspectral imagery and airborne laser bathymetry. PhD dissertation, University of Florida. Gainsville, Florida, U.S.A, p 119

    Google Scholar 

  • Lorenzen K, Steneck RS, Warner RR, Parma AM, Coleman FC, Leber KM (2010) The spatial dimensions of fisheries: putting it all in place. Bull Mar Sci 86:169–177

    Google Scholar 

  • Liu H, Sherman D, Gu S (2007) Automated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on Monte Carlo simulation. J Coastal Res 23:1359–1369

    Article  Google Scholar 

  • Liu H, Wang L, Sherman D, Gao Y, Wu Q (2010) An object-based conceptual framework and computational method for representing and analyzing coastal morphological changes. Int J Geogr Inform Sci 24(7):1015–1041

    Article  Google Scholar 

  • McKenzie C, Gilmour B, Van Den Ameele EJ, Sinclair M (2001) Integration of LiDAR data in CARIS HIPS for NOAA charting. Fugro Pelagos white papers. Fugro Pelagos, San Diego, CA, pp 1–16

    Google Scholar 

  • Meyer CG, Holland KN (2005) Movement patterns, home range size and habitat utilization of the bluespine unicornfish, Naso unicornis (Acanthuridae) in a Hawaiian marine reserve. Environ Biol Fishes 73:201–210

    Article  Google Scholar 

  • Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39:37–55

    Article  Google Scholar 

  • Morton RA, Miller T, Moore L (2005) Historical shoreline changes along the US Gulf of Mexico: a summary of recent shoreline comparisons and analyses. J Coastal Res 21:704–709

    Article  Google Scholar 

  • Norse EA, Crowder LB, Gjerde K, Hyrenbach D, Roberts C, Safina C, Soulé ME (2005) Place-based ecosystem management in the open ocean. Mar Conserv Biol Sci Maintaining Sea’s Biodivers, pp 302–327

    Google Scholar 

  • Nunes V, Pawlak G (2008) Observations of bed roughness of a coral reef. J Coastal Res 24(2 Suppl. B):39–50

    Google Scholar 

  • Olsen E, Kleiven A, Skjoldal H, von Quillfeldt C (2010) Place-based management at different spatial scales. J Coastal Conserv, pp 1–13

    Google Scholar 

  • Pike RJ (2001a) Digital terrain modelling and industrial surface metrology—converging crafts. Int J Mach Tools Manuf 41(13–14):1881–1888

    Article  Google Scholar 

  • Pike RJ (2001b) Digital terrain modeling and industrial surface metrology: converging realms. Prof Geogr 53(2):263–274

    Google Scholar 

  • Pittman SJ, Christenson J, Caldow C, Menza C, Monaco M (2007) Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol Model 204:9–21

    Article  Google Scholar 

  • Pittman SJ, Costa BM, Battista TA (2009) Using LiDAR bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J Coastal Res 53(SI):27–38

    Google Scholar 

  • Pittman SJ, Brown KA (2011) Multiscale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE 6(5):e20583. doi:10.1371/journal.pone.0020583

    Article  Google Scholar 

  • Pittman SJ, Connor DW, Radke L, Wright DJ (2011a) Application of estuarine and coastal classifications in marine spatial management. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 1. Academic Press, UK, pp 163–205

    Google Scholar 

  • Pittman SJ, Costa BM, Jeffrey CFG, Caldow C (2011b) Importance of seascape complexity for resilient fish habitat and sustainable fisheries. In: Proceedings of the 63rd Gulf and Caribbean Fisheries Institute meeting, San Juan, Puerto Rico, 2010

    Google Scholar 

  • Pratchett MS, Munday MS, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Article  Google Scholar 

  • Pohl C, Van Genderen JL (1998) Multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  • Purkis SJ, Kohler KE (2008) The role of topography in promoting fractal patchiness in a carbonate shelf landscape. Coral Reefs 27:977–989

    Article  Google Scholar 

  • Purkis SJ, Graham NAJ, Riegl BM (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs 27:167–178

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Reif M, Dunkin L, Wozencraft J, Macon C (2011) Sensor fusion trends. Earth Imaging J 8(2):32–35

    Google Scholar 

  • Reif MK, Wozencraft JM, Dunkin LD, Sylvester CS, Macon CL (2012) U.S. Army Corps of Engineers airborne coastal mapping in the Great Lakes. J Great Lakes Res (in press)

    Google Scholar 

  • Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera J, Dayton P (2002) A general model for designing networks of marine reserves. Science 298:1991–1993

    Article  Google Scholar 

  • Sallenger AH, Krabill WB, Swift RN, Brock J, List J, Hansen M, Holman RA, Manizade S, Sontag J, Meredith A (2003) Evaluation of airborne topographic LiDAR for quantifying beach changes. J Coastal Res 125–133

    Google Scholar 

  • Sandwell D, Gille S, Orcutt J, Smith W (2003) Bathymetry from space is now possible. Eos Trans AGU 84:37

    Google Scholar 

  • Saye SE, Van Der Wal D, Pye K, Blott SJ (2005) Beach-dune morphological relationships and erosion/accretion: an investigation at five sites in England and Wales using LiDAR data. Geomorphology 72:128–155

    Article  Google Scholar 

  • Sinclair M, Quadros N (2010) Airborne bathymetric LiDAR survey for climate change. FIG Congress: facing the challenges and building capacity, 11–16 April, Sydney, Australia, p 17

    Google Scholar 

  • Smith RA, JL Irish, Smith MQ (2000) Airborne LiDAR and airborne hyperspectral imagery: a fusion of two proven sensors for improved hydrographic surveying. In: Proceedings of Canadian hydrographic conference, Montreal, Canada, May 15–19

    Google Scholar 

  • Stephenson D, Sinclair M (2006) NOAA LiDAR data acquisition and processing report: Project OPR-I305-KRL-06, NOAA Data acquisition and processing report NOS OCS (Online)

    Google Scholar 

  • Stockdon HF, Doran KS, Sallenger Jr AH (2009) Extraction of LiDAR-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes. J Coastal Res 53(SI):59–65

    Google Scholar 

  • Storlazzi CD, Logan JB, Field ME (2003) Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry: Southern Molokai, Hawaii. Geol Soc Am Bull 115:1344

    Article  Google Scholar 

  • Storlazzi CD, Logan JB, Field ME (2008) Shape of the South Moloka’i fringing reef: trends and variation. In: Field ME, Cochran, SA, Logan JB, Storlazzi CD (eds) The coral reef of South Moloka‘i, Hawai‘i-portrait of a sediment-threatened fringing reef. U.S. Geological Survey Scientific Investigation Report 2007-5101, pp 33–36

    Google Scholar 

  • Stumpf RP, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr 48(1):547–556

    Article  Google Scholar 

  • Tang L, Chamberlin CD, Tolkova E, Spillane M, Titov VV, Bernard EN, Mofjeld HO (2006) Assessment of potential tsunami impact for Pearl Habor, Hawaii, Tech. Memo. OAR PMEL-131. Seattle, Wash, p 36

    Google Scholar 

  • Tang L, Titov VV, Chamberlain CD (2009) Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J Geophy Res 114, C12025, pp 22

    Google Scholar 

  • Venturato AJ (2005) A digital elevation model for seaside Oregon: procedures, data sources and analysis. NOAA Technical Memorandum OAR PMEL-129. Seattle, WA, p 21

    Google Scholar 

  • Wang C-K, Philpot WD (2007) Using airborne bathymetric LiDAR to detect bottom type variation in shallow waters. Remote Sens Environ 106:123–135

    Article  Google Scholar 

  • Walker BK, Riegl B, Dodge RE (2008) Mapping coral reef habitats in Southeast Florida using a combined technique approach. J Coastal Res 24(5):1138–1150

    Article  Google Scholar 

  • Walker BK (2009) Benthic habitat mapping of Miami-Dade County: visual interpretation of LADS bathymetry and aerial photography. Florida DEP report #RM069. Miami Beach, FL, p 47

    Google Scholar 

  • Walker BK, Jordan LKB, Spieler RE (2009) Relationship of reef fish assemblages and topographic complexity on Southeastern Florida coral reef habitats. J Coastal Res SI 53:39–48

    Article  Google Scholar 

  • Ward TJ, Vanderklift MA, Nicholls AO, Kenchington RA (1999) Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecol Appl 9:691–698

    Article  Google Scholar 

  • Wedding LM, Friedlander AM, McGranaghan M, Yost R, Monaco M (2008) Using bathymetric LiDAR to define nearshore benthic habitat complexity: implications for management of reef fish assemblages in Hawaii. Remote Sens Environ 112:4159–4165

    Article  Google Scholar 

  • Wedding LM, Friedlander AM (2008) Determining the influence of seascape structure on coral reef fishes in Hawaii using a geospatial approach. Mar Geodesy 31:246–266

    Article  Google Scholar 

  • White SA, Wang Y (2003) Utilizing DEMs derived from LiDAR data to analyze morphologic change in the North Carolina coastline. Remote Sens Environ 85:39–47

    Article  Google Scholar 

  • Williams ID, Walsh WJ, Miyasaka A, Friedlander AM (2006) Effects of rotational closure on coral reef fishes in Waikiki-Diamond head fishery management area, Oahu, Hawaii. Mar Ecol Prog Ser 310:139–149

    Article  Google Scholar 

  • Wozencraft JM, Irish JL, Wiggins CE, Stupplebeen H, Chavez PS (2000) Regional mapping for coastal management, Maui and Kauai, Hawaii. In: Proceedings of national beach preservation conference 2000, Maui, Hawaii

    Google Scholar 

  • Wozencraft JM, Irish JL (2000) Airborne LiDAR surveys and regional sediment management. In: Proceedings 20th EARSeL symposium: workshop on LiDAR remote sensing of land and sea, European association of remote sensing laboratories, June 16–17, Dresden, Germany, p 11

    Google Scholar 

  • Wozencraft JM, Lillycrop WJ (2006) JALBTCX coastal mapping for the USACE. Int Hydrogr Rev 7(2):28–37

    Google Scholar 

  • Wozencraft JM, Macon CL, Lillycrop WJ (2008) High resolution coastal data for Hawaii. Am Soc Civ Eng, 6–8 Nov, Pittsburgh, PA

    Google Scholar 

  • Wozencraft JM, Millar D (2005) Airborne LiDAR and integrated technologies for coastal mapping and charting. Mar Technol Soc J 39(3):27–35

    Article  Google Scholar 

  • Wright CW, Brock JC (2002) EAARL: a LiDAR for mapping shallow coral reefs and other coastal environments. In: Proceedings of the 7th international conference on remote sensing for marine and coastal environments, May 20–22, 2002, Miami, FL

    Google Scholar 

  • Zawada DG, Brock JC (2009) A multiscale analysis of coral reef topographic complexity using LiDAR-derived bathymetry

    Google Scholar 

  • Zawada DG, Piniak GA, Hearn CJ (2010) Topographic complexity and roughness of a tropical benthic seascape. Geophys Res Lett 37:L14604

    Article  Google Scholar 

  • Zhang K, Whitman D, Leatherman S, Robertson W (2009) Quantification of beach changes caused by Hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys

    Google Scholar 

Download references

Acknowledgments

This chapter was made possible with contributions from Tim Battista (NOAA Biogeography Branch), Alan M. Friedlander (University of Hawaii/USGS), Curt D. Storlazzi (USGS), Michael E. Field and (USGS) and Christopher L. Conger. Support for the authors was provided by NOAA’s Coral Reef Conservation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Pittman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pittman, S.J., Costa, B., Wedding, L.M. (2013). LiDAR Applications. In: Goodman, J., Purkis, S., Phinn, S. (eds) Coral Reef Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9292-2_6

Download citation

Publish with us

Policies and ethics