Skip to main content

Hyperspectral Applications

  • Chapter
  • First Online:
Coral Reef Remote Sensing

Abstract

Hyperspectral approaches are at the technological forefront of optical remote sensing of coral reef environments. Currently most hyperspectral data acquisition employs instruments mounted on airplanes, but in the coming years several planned satellite instruments will increase data availability for hyperspectral analysis of reefs. At the simplest level, hyperspectral data permits classification techniques to derive greater number of classes at higher accuracy than multispectral data can support. Alternatively, full spectral reflectance profiles at each pixel allow band-ratio or derivative approaches to look for features of benthic types that occur at specific wavelengths. But while the feasibility of this approach is supported by in situ data, there have been relatively few successfully demonstrated image analyses. Beyond this, working with full spectral reflectance profiles has stimulated exciting new model-based methods that aim to tease apart depth, benthic type and water quality parameters simultaneously. These methods can also incorporate uncertainty propagation, so that error bars can be placed on each derived parameter at every image pixel. Working with hyperspectral data takes coral reef remote sensing to the edge of what can be achieved by per-pixel optical analysis. Natural variations in the reflectance of benthic types and water column properties become limiting and fundamentally confound some objectives. This prompts future developments to look at analyzing spatial patterns and also to establish the cost-benefit ratio of the integration of other data, such as sonar and LiDAR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Dekker AG, Phinn SR, Anstee J, Bissett P, Brando VE, Casey B, Fearns P, Hedley J, Klonowski W, Lee ZP, Lynch M, Lyons M, Mobley C, Roelfsema C (2011a) Inter-comparison of shallow water bathymetry, hydrooptics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol Oceanogr Methods 9:396–425

    Article  Google Scholar 

  • Hedley JD, Mumby PJ (2002a) Biological and remote sensing perspectives of pigmentation in coral reef organisms. Adv Marine Biol 43:277–317

    Article  Google Scholar 

  • Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Lesser MP, Mobley CD (2007a) Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery. Coral Reefs 26:819–829

    Article  Google Scholar 

  • Mobley CD (1994a) Light and water. Academic, San Diego

    Google Scholar 

References

  • Adams JB, Smith MO, Johnson PE (1986) Spectral mixture modelling: a new analysis of rock and soil types at the Viking Lander I site. J Geophys Res 91:8098–8112

    Article  Google Scholar 

  • Adler-Golden SM, Matthew MW, Bernstein LS, Levine RY, Berk A, Richtsmeier SC, Acharya PK, Anderson GP, Felde JW, Gardner JA, Hoke ML, Jeong LS, Pukall B, Ratkowski AJ, Burke HK (1999) Atmospheric correction for short-wave imagery based on MODTRAN 4. SPIE Proc 3753:61–69

    Google Scholar 

  • Andréfouët S, Muller-Karger FE, Hochberg EJ, Hu C, Carder KL (2001) Change detection in shallow coral reef environments using Landsat 7 ETM + data. Remote Sens Environ 78:150–162

    Article  Google Scholar 

  • Bejarano S, Mumby PJ, Hedley JD, Sotheran I (2010) Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats. Remote Sens Environ 114:2768–2778

    Article  Google Scholar 

  • Bertels L, Vanderstraete T, Collie SV, Knaeps E, Sterckx S, Goossens R, Deronde B (2007) Mapping of coral reefs using hyperspectral CASI data; a case study: Fordata, Tanimbar, Indonesia. Int J Remote Sens 29:2359–2391

    Article  Google Scholar 

  • Bina RT, Ombac ER (1979) Effects of tidal fluctuations on the spectral patterns of Landsat coral reef imageries. In: Proceedings of the 13th international symposium of the remote sensing of environment. University of Michigan, Ann Arbor, pp 2051–2070

    Google Scholar 

  • Brando VE, Dekker AG (2003) Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans Geosci Remote Sens 41:1378–1387

    Article  Google Scholar 

  • Brando VE, Anstee JM, Wettle M, Dekker AG, Phinn SR, Roelfsema C (2009) A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens Environ 113:755–770

    Article  Google Scholar 

  • Caplosini P, Andréfouët S, Rion C, Payri C (2003) A comparison of Landsat ETM+, SPOT HRV, Ikonos, ASTER, and airborne MASTER data for coral reef habitat mapping in South Pacific islands. Canadian J Remote Sens 29:187–200

    Article  Google Scholar 

  • Cronin TW, Marshall NJ (1989) A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature 339:137–140

    Article  Google Scholar 

  • Cureton GP, Anderson SJ, Lynch MJ, McGann BT (2007) Retrieval of wind wave elevation spectra from sunglint data. IEEE Trans Geosci Remote Sens 45:2829–2836

    Article  Google Scholar 

  • Dadhich AP, Nadaoka K, Yamamoto T, Kayanne H (2011) Detecting coral bleaching using high-resolution satellite data analysis and 2-dimensional thermal model simulation in the Ishigaki fringing reef, Japan. Coral Reefs. doi:10.1007/s00338-011-0860-1

    Google Scholar 

  • de Haan JF, Kokke JMM, Hoogenboom HJ, Dekker AG (1997) An integrated toolbox for processing and analysis of remote sensing data of inland and coastal waters—atmospheric correction. In: 4th international conference on remote sensing for marine and coastal environments, Orlando, Florida

    Google Scholar 

  • de Vries DH (1994) Imaging spectroscopy: CASI operations in Australia during summer 1992/93. In: 7th Australasian remote sensing conference proceedings, pp 136–140, ARSC, Melbourne, Australia

    Google Scholar 

  • Dekker A, Byrne G, Brando V, Anstee J (2003) Hyperspectral mapping of intertidal rock platform vegetation as a tool for adaptive management. CSIRO Land and Water, Canberra, Australia

    Google Scholar 

  • Dekker AG, Phinn SR, Anstee J, Bissett P, Brando VE, Casey B, Fearns P, Hedley J, Klonowski W, Lee ZP, Lynch M, Lyons M, Mobley C, Roelfsema C (2011b) Inter-comparison of shallow water bathymetry, hydrooptics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol Oceanogr Methods 9:396–425

    Article  Google Scholar 

  • Dustan P, Dobson E, Nelson G (2002) Landsat Thematic Mapper: detection of shifts in community composition of coral reefs. Conserv Biol 15:892–902

    Article  Google Scholar 

  • Elvidge CD, Dietz JB, Berkelmans R, Andréfouët S, Skirving W, Strong AE, Tuttle BT (2004) Satellite observation of Keppel Islands (Great Barrier Reef) 2002 coral bleaching using IKONOS data. Coral Reefs 23:123–132

    Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • ERDAS (2011). ERDAS IMAGINE. http://www.erdas.com

  • Exelis VIS, Exelis Visual Information Solutions (2012) ENVI—Environment for visualizing images, Version 4.8

    Google Scholar 

  • Fearns P, Rodrigo G, Klonowski W (2008) Combining hyperspectral and environmental knowledge using probabilistic methods to produce shallow water habitat maps. In: Proceedings of ocean optics XIX, Ciocco, Tuscany, Italy

    Google Scholar 

  • Ferrier G, Trahair NS (1995) Evaluation of apparent surface reflectance estimation methodologies. Int J Remote Sens 16:2291–2297

    Article  Google Scholar 

  • Gao B-C, Montes MJ, Ahmad Z, Davis CO (2000) Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl Opt 39:887–896

    Article  Google Scholar 

  • Goodman JA, Ustin SL (2007) Classification of benthic composition in a coral reef environment using spectral unmixing. J Appl Remote Sens 1:011501

    Article  Google Scholar 

  • Goodman JA, Lee ZP, Ustin SL (2008) Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii. Appl Optics 47:F1–F11

    Article  Google Scholar 

  • Green EP, Mumby PJ, Edwards AJ, Clark CD (1996) A review of remote sensing for tropical coastal resources assessment and management. Coastal Manage 24:1–40

    Article  Google Scholar 

  • Green EP, Mumby PJ, Edwards AJ, Clark CD (2000) Remote sensing handbook for tropical coastal management. UNESCO, Paris

    Google Scholar 

  • Hamylton S (2011) Estimating the coverage of coral reef benthic communities from airborne hyperspectral remote sensing data: multiple discriminant function analysis and linear spectral unmixing. Int J Remote Sens. doi:10.1080/01431161.2011.574162

    Google Scholar 

  • Harborne AR, Mumby PJ, Zychaluk K, Hedley JD, Blackwell PG (2006) Modeling the beta diversity of coral reefs. Ecology 87:2871–2881

    Article  Google Scholar 

  • Heege T, Hausknecht P, Kobryn H (2007) Hyperspectral seafloor mapping and direct bathymetry calculation using HyMap data from the Ningaloo Reef and Rottnest Island areas in Western Australia. In: Proceedings of the 5th EARSel Workshop on imaging spectroscopy, Bruges, 23–25 April, pp 1–8

    Google Scholar 

  • Hedley JD (2008) A three-dimensional radiative transfer model for shallow water environments. Opt Express 16:21887–21902

    Article  Google Scholar 

  • Hedley JD (2011a) Modelling the optical properties of suspended particulate matter of coral reef environments using the finite difference time domain (FDTD) method. Geo Marine Letters. doi:10.1007/s00367-011-0265-8

    Google Scholar 

  • Hedley JD (2011b) PlanarRad user manual. http://www.planarrad.com

  • Hedley JD, Enríquez S (2010) Optical properties of canopies of the tropical seagrass Thalassia testudinum estimated by a three-dimensional radiative transfer model. Limnol Oceanogr 55:1537–1550

    Article  Google Scholar 

  • Hedley JD, Harborne AR, Mumby PJ (2005) Simple and robust removal of sun glint for mapping shallow water benthos. Int J Remote Sens 26:2107–2112

    Article  Google Scholar 

  • Hedley JD, Mumby PJ (2002b) Biological and remote sensing perspectives of pigmentation in coral reef organisms. Adv Marine Biol 43:277–317

    Article  Google Scholar 

  • Hedley JD, Mumby PJ (2003) A remote sensing method for resolving depth and subpixel composition of aquatic benthos. Limnol Oceanogr 48:480–488

    Article  Google Scholar 

  • Hedley JD, Mumby PJ, Joyce KE, Phinn SR (2004) Spectral unmixing of coral reef benthos under ideal conditions. Coral Reefs 23:60–73

    Article  Google Scholar 

  • Hedley JD, Roelfsema C, Phinn SR (2009a) Efficient radiative transfer model inversion for remote sensing applications. Remote Sens Environ 113:2527–2532

    Article  Google Scholar 

  • Hedley JD, Roelfsema C, Phinn S (2009b) Uncertainty propagation in a physics-based shallow water mapping algorithm applied to CASI and QuickBird imagery of Heron Reef, GBR. In: Proceedings of RSPSoc conference, Leicester

    Google Scholar 

  • Hedley JD, Roelfsema C, Phinn S (2010) Propagating uncertainty through a shallow water mapping algorithm based on radiative transfer model inversion. In: Proceedings of ocean optics XX, Anchorage

    Google Scholar 

  • Hedley JD, Roelfsema C, Koetz B, Phinn S (2012a) Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sens Environ. doi:10.1016/j.rse.2011.06.028

    Google Scholar 

  • Hedley JD, Roelfsema C, Phinn S, Mumby PJ (2012b) Environmental and sensor limitations in optical remote sensing of coral reefs: implications for monitoring and sensor design. Remote Sens 4:271–302. doi:10.3390/rs4010271

    Article  Google Scholar 

  • Hedley JD, Roelfsema C, Phinn SR (2012c). Bathymetric map of Heron Reef, Australia, derived from airborne hyperspectral data at 1 m resolution. doi: 10.1594/PANGAEA.779522

  • Hochberg EJ, Atkinson MJ (2000) Spectral discrimination of coral reef benthic communities. Coral Reefs 19:164–171

    Article  Google Scholar 

  • Hochberg EJ, Atkinson MJ, Andrefouet S (2003a) Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens Environ 85:159–173

    Article  Google Scholar 

  • Hochberg E, Andrefouet S, Tyler M (2003b) Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Trans Geosci Remote Sens 41:1724–1729

    Article  Google Scholar 

  • Hochberg EJ, Atkinson MJ (2003) Capabilities of remote sensors to classify coral, algae and sand as pure and mixed spectra. Remote Sens Environ 85:174–189

    Article  Google Scholar 

  • Holden H, LeDrew E (1999) Hyperspectral identification of coral reef features. Int J Remote Sens 13:2545–2563

    Article  Google Scholar 

  • ITRES (2008) CASI-550 airborne hyperspectral solutions. www.itres.com/assets/pdf/CASI-550.pdf

  • Isoun E, Fletcher C, Frazer N, Gradie J (2003) Multi-spectral mapping of reef bathymery and coral cover; Kailua Bay, Hawaii. Coral Reefs 22:68–82

    Google Scholar 

  • Jeffery SW, Mantoura RFC, Bjørnland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffery SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 449–559

    Google Scholar 

  • Joyce KE (2004) A method for mapping live coral cover using remote sensing. Ph.D. thesis, University of Queensland, Brisbane, Australia

    Google Scholar 

  • Karpouzli E, Malthus T (2003) The empirical line method for atmospheric correction of IKONOS imagery. Int J Remote Sens 24:1143–1150

    Article  Google Scholar 

  • Kay S, Hedley JD, Lavender S (2009) Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sensing 1:697–730

    Article  Google Scholar 

  • Kay S, Hedley JD, Lavender S, Nimmo-Smith A (2011) Light transfer at the ocean surface modeled using high resolution sea surface realizations. Opt Express 19:6493–6504

    Article  Google Scholar 

  • Kennedy RE, Cohen WB, Takao G (1997) Empirical methods to compensate for a view-angle-dependent brightness gradient in AVIRIS imagery. Remote Sens Environ 62:277–291

    Article  Google Scholar 

  • Klonowski WM, Fearns PRCS, Lynch MJ (2007) Retrieving key benthic cover types and bathymetry from hyperspectral imagery. J Appl Remote Sens 1:011505

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF, Matarrese R, Klemm FJ Jr (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data Part I: path radiance. Appl Optics 45:6726–6774

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF (2007) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: homogeneous Lambertian and anisotropic surfaces. Appl Opt 46:4455–4464

    Article  Google Scholar 

  • Kutser T, Miller I, Jupp D (2006) Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries. Estuar Coast Shelf Sci 70:449–460

    Article  Google Scholar 

  • Kutser T, Vahtmäe E, Praks J (2009) A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal. Remote Sens Environ 113:2267–2274

    Article  Google Scholar 

  • Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1998) Hyperspectral remote sensing for shallow waters I. A semianalytical model. Appl Optics 37:6329–6338

    Article  Google Scholar 

  • Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Appl Opt 38:3831–3843

    Article  Google Scholar 

  • Lee Z, Carder KL, Chen RF, Peacock TG (2001) Properties of the water column and bottom derived from airborne visible infrared imaging spectrometer (AVIRIS) data. J Geophys Res 106:11639–11651

    Article  Google Scholar 

  • Lee Z, Casey B, Arnone R, Weidemann A, Parsons R, Montes MJ, Gao B-C, Goode W, Davis CO, Dyef J (2007) Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform. J Appl Remote Sens 1:011502

    Article  Google Scholar 

  • Lesser MP, Mobley CD (2007b) Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery. Coral Reefs 26:819–829

    Article  Google Scholar 

  • Lyzenga DR (1978) Passive remote sensing techniques for mapping water depth and bottom features. Appl Opt 17:379–383

    Article  Google Scholar 

  • Lyzenga DR (1981) Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int J Remote Sens 2:71–82

    Article  Google Scholar 

  • Lyzenga D, Malinas N, Tanis F (2006) Multispectral bathymetry using a simple physically based algorithm. IEEE Trans Geosci Remote Sens 44:2251–2259

    Article  Google Scholar 

  • Maritorena S, Morel A, Gentili B (1994) Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnol Oceanogr 39:1689–1703

    Article  Google Scholar 

  • Mather PM (1999) Computer processing of remotely sensed images, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Mayer B, Kylling A (2005) Technical note: the libRadtran software package for radiative transfer calculations—description and examples of use. Atmos Chem Phys 5:1855–1877

    Article  Google Scholar 

  • Milovich JA, Frulla LA, Gagliardini DA (1995) Environmental contribution to the atmospheric correction for Landsat-MSS images. Int J Remote Sens 16:2515–2537

    Article  Google Scholar 

  • Mishra DR, Narumalani S, Rundquist D, Lawson M, Perk R (2007) Enhancing the detection of coral reef and associated benthic habitats: a hyperspectral remote sensing approach. J Geophys Res 112: CO8014

    Google Scholar 

  • Mobley CD (1994b) Light and water. Academic, San Diego

    Google Scholar 

  • Mobley CD, Sundman L (2000) Hydrolight 4.1 user’s guide. Sequoia Scientific. http://www.sequoiasci.com/products/Hydrolight.aspx

  • Mobley CD, Sundman LK, Davis C, Bowles JH, Downes TV, Leathers RA, Montes MJ, Bissett WP, Kohler DDR, Reid RP, Louchard EM, Gleason A (2005) Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl Opt 44:3576–3592

    Article  Google Scholar 

  • Montes MJ, Gao B-C, Davis CO (2001) A new algorithm for atmospheric correction of hyperspectral remote sensing data. Proc SPIE-Int Soc Opt Eng SPIE 4383:23–30

    Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ, Clark CD (1997) Coral reef habitat-mapping: how much detail can remote sensing provide? Mar Biol 130:193–202

    Article  Google Scholar 

  • Mumby PJ, Clark CD, Green EP, Edwards AJ (1998) Benefits of water column correction and contextual editing for mapping coral reefs. Int J Remote Sens 19:203–210

    Article  Google Scholar 

  • Mumby PJ, Chisholm JRM, Clark CD, Hedley JD, Jaubert J (2001) A bird’s-eye view of the health of coral reefs. Nature 413:36

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82:248–257

    Article  Google Scholar 

  • Mumby PJ, Harbourne AR (1999) Development of a systematic classification scheme of marine habitats to faciltate regional management and mapping of Caribbean coral reefs. Biol Conserv 88:155–163

    Article  Google Scholar 

  • Mumby PJ, Hedley JD, Chisholm JRM, Clark CD, Ripley H, Jaubert J (2004) The cover of living and dead corals from airborne remote sensing. Coral Reefs 23:171–183

    Article  Google Scholar 

  • Mustard J, Staid M, Fripp W (2001) A semianalytical approach to the calibration of AVIRIS data to reflectance over water application in a temperate estuary. Remote Sens Environ 75:335–349

    Article  Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water II. Integrating cavity measurements. Appl Optics 36:8710–8723

    Article  Google Scholar 

  • Phinney J, Muller-Karger F, Dustan P, Sobel J (2002) Using remote sensing to reassess the mass mortality of Diadema antillarum 1983–1984. Conserv Biol 15:885–891

    Article  Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79:2101–2114

    Article  Google Scholar 

  • Roelfsema CM, Marshall J, Hochberg E, Phinn S, Goldizen A, Joyce KE (2006) Underwater spectrometer system 2006 (UWSS04). http://ww2.gpem.uq.edu.au/CRSSIS/publications/ UW %20Spec %20Manual %2029August06.pdf

  • Schuyler Q, Dustan P, Dobson E (2006) Remote sensing of coral reef community change on a remote coral atoll: Karang Kapota, Indonesia. In: Proceedings of 10th international coral reef symposium, Okinawa, Japan. 28 June– 2 July, 2004, pp 1763–1770

    Google Scholar 

  • Siebeck UE, Marshall NJ, Kluter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460

    Article  Google Scholar 

  • Slivkoff M (2010) Dynamic above-water radiance and irradiance collector (DALEC). http://wwwinsitumarineoptics.com

  • Smith GM, Milton EJ (1999) The use of the empirical line method to calibrate remotely sensed data to reflectance. Int J Remote Sens 20:2653–2662

    Article  Google Scholar 

  • Splinter KD, Holman RA (2009) Bathymetry estimation from single-frame images of nearshore waves. IEEE Trans Geosci Remote Sens 47:3151–3160

    Article  Google Scholar 

  • Tsai F, Philpot W (1998) Derivative analysis of hyperspectral data. Remote Sens Environ 66:41–51

    Article  Google Scholar 

  • Tote C, Sterckx S, Knaeps E, Raymaekers D (2011) Remote sensing of shallow water bodies: effect of the bottom substrate on water leaving reflectance. In: 7th EARSeL workshop of the special interest group in imaging spectroscopy, 11–13th April 2011, Edinburgh

    Google Scholar 

  • Wettle M, Ferrier G, Lawrence AJ, Anderson K (2003) Fourth derivative analysis of Red Sea coral reflectance spectra. Int J Remote Sens 24:3867–3872

    Article  Google Scholar 

  • Wettle M, Brando VE (2006) Sambuca: semi-analytical model for bathymetry un-mixing and concentration assessment. CSIRO Land and Water Science Report 22/06

    Google Scholar 

  • Wolfe MA (1978) Numerical methods for unconstrained optimization. Van Nostrand Reinhold Company, New York

    Google Scholar 

Download references

Acknowledgments

Reflectance spectra in Fig. 4.3 were collected by Chris Roelfsema. Heron Island imagery was collected by Stuart Phinn and funded by the Australian Research Council, and image pre-processing was conducted by Karen Joyce. Inherent optical properties in Fig. 4.2b were collected with instrumentation held by the UK’s NERC Field Spectroscopy Facility and during field work part-funded by the World Bank/Global Environment Facility Coral Reef Targeted Research Program. Figure 4.4a and b were derived from a figure previously published in Hedley et al. 2005 and are reproduced with permission from Taylor and Francis. Figure 4.5 is reproduced from Harborne et al. 2006 with permission from the Ecological Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Hedley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hedley, J.D. (2013). Hyperspectral Applications. In: Goodman, J., Purkis, S., Phinn, S. (eds) Coral Reef Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9292-2_4

Download citation

Publish with us

Policies and ethics