Skip to main content

Vegetative Development: Total Leaf Area and Surface Area Indexes

  • Chapter
  • First Online:
Methodologies and Results in Grapevine Research

Abstract

Canopy management determines canopy shape and spatial leaf area distribution which in turn determines vineyard productivity. There are two indexes evaluating vineyard productivity which involve leaf development: total leaf area – LAI – and external leaf area – SA –. The first one refers to total leaf area developed per m2 of soil while SA refers to the external leaves, assuming that most of photosynthesis – 90% – is carried out by those leaves. This chapter aims to provide a feasible methodology to calculate both LAI and SA under different training systems and cultivars in order to predict vineyard productivity or/and to make decisions along the season. Relations between main leaf nerve length (cm) and leaf surface area (cm2) are given for Airén, Albariño, Barbera, Cabernet franc, Cabernet sauvignon, Chardonnay, Godello, Garnacha, Graciano, Mencía, Merlot, Petit verdot, Pinot noir, Semillon, Syrah, Tempranillo, Treixadura, Verdejo and Viognier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Area of the average leaf (e.g. cm2)

ALA:

Average leaf area per shoot (e.g. cm2 shoot−1)

Area:

Individual leaf area (e.g. cm2)

C:

Average contour canopy length (e.g. m)

CW:

Average canopy width (e.g. m)

D:

Distance between vines along the row (e.g. m)

ET0 :

Reference evapotranspiration (e.g. mm day−1)

g:

Generatrix line, which is the length between the vertex (trunk at ground level) and the perimeter point of the circumference of the base in a inverted cone shaped canopy bush (e.g. m)

G:

Length of gaps between plants (e.g. m)

GDC:

Geneva double-curtain

H:

Height of the cap head-trained bush or average canopy height of VSP (m)

L:

Area of the largest leaf (e.g. cm2)

LN:

Main nerve length (e.g. cm)

NL:

Number of leaves

R:

Radius of the sphere canopy bush or radius at base of inverted cone shaped canopy bush (e.g. m)

S:

Area of the smallest leaf (e.g. cm2)

Suffix 1:

Main leaf

Suffix 2:

Lateral leaf

VSP:

Vertical shoot-positioned

W:

Row spacing (e.g. m)

References

  • Baeza P, Lissarrague JR (2000) Definición y evaluación de los sistemas de conducción del viñedo. In: La conducción de la vid. Ed. Gobierno de la Rioja. Consejería de Agricultura, Ganadería y Desarrollo Rural

    Google Scholar 

  • Baeza P, Ruiz C, Cuevas E, Lissarrague JR (2005) Ecophysiological and Agronomic Response of Tempranillo. Am J Enol Vitic 56:129–138

    Google Scholar 

  • Buttrose M S (1966) The effect of reducing leaf area on the growth of roots, stems and berries of Gordo grapevines. Vitis 5:455–464

    Google Scholar 

  • Carbonneau A (1989) L’exposition utile du feuillage: définition du potentiel du système de conduite. GESCO Nº4, pp 25–47

    Google Scholar 

  • Carbonneau A (1991) Observation sur vigne: codification des donnés agronomiques. Riv de Vitic et Enol 4:37–45

    Google Scholar 

  • Carbonneau A, Huglin P (1980) Adaption of training systems to French regions. International Symposium of grapes and wines. U. Davis, California, pp 376–385

    Google Scholar 

  • Champagnol F (1984). Le mode de conduite. Eléments de physiologie de la vigne et de viticulture generale. Dehan, Montpellier, pp 245–258

    Google Scholar 

  • Champagnol F (1993) La dimension des baies, facteur de qualité de la vendange. Progrès Agricole et Viticole 110(1):11–16

    Google Scholar 

  • Cloete H, Archer E, Hunter J J (2006). Shoot heterogeneity effects on Shiraz/Richter 99 grapevines. I. vegetative growth. S Afr J Enol Vitic 27:68–75

    Google Scholar 

  • Dokoozlian N, Hirschfelt DJ (1995) The influence of cluster thinning at various stages of fruit development on Flame seedless table grapes. Am J Enol Vitic 46:429–436

    Google Scholar 

  • Fernández J, Balkar J, Meyer LH (1977) Influencia de la iluminación sobre la actividad fotosintética de las hojas de vid cultivada en espaldera. Turrialba 27:3–6

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hunter JJ (2000) Implications of seasonal canopy management and growth compensation in grapevine. S.Afr J Enol Vitic 21:81–91

    Google Scholar 

  • Intrieri C (1987) Experiences on the effect of vine spacing and trellis-training system on canopy micro-climate, vine performance and grape quality. Acta Horticulturae 206:69–87

    Google Scholar 

  • Intrieri C, Poni S, Silvestroni O, Filippetti I (1992) Leaf age, leaf position and photosynthesis in potted grapevines. Adv Hort Sci 1:23–27

    Google Scholar 

  • Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality – A review. Am J Enol Vitic 44:409–430

    CAS  Google Scholar 

  • Johnson RS, Lakso AN (1985) Relationships between stem length, leaf area, stem weight, and accumulated growing degree-days in apple shoots. J Am Soc Hortic Sci 110:586–590

    Google Scholar 

  • Kliewer WM, Antcliff AJ (1970) Influence of defoliation, leaf darkening, and cluster shading on the growth and composition of Sultana grapes. Am J Enol Vitic 21:26–36

    Google Scholar 

  • Kliewer WM, Dokoozlian NK (2005). Leaf Area/Crop Weight ratios of grapevines: Influence on fruit composition and Wine Quality. Am J Enol Vitic 56:170–181

    Google Scholar 

  • Kliewer WM, Weaver RJ (1971) Effect of crop level and leaf area on growth, composition and coloration of Tokay grapes. Annual meeting of the American Society of Enologist, pp 172–177

    Google Scholar 

  • Koblet W (1969) Migration of assimilates in vine shoots and influence of the leaf surface on grape yield and quality. Wein-Wiss 24:277–319

    Google Scholar 

  • Koblet W (1975) Wanderung von Assimilaten aus verschiedenen Rebenblättern während der reifephase der Trauben. Wein-Wiss 30:241–249

    Google Scholar 

  • Martínez de Toda F, Sancha JC, Llop E (1991) Estudio comparado del microclima luminoso en los sistemas de conducción en vaso y espaldera en Rioja. Riv Vitic Enol 4:149–156

    Google Scholar 

  • Matthews M, Anderson M, Schultz H (1987) Phenologic and growth responses to early and late season water deficits in Cabernet franc. Vitis 26:147–160

    Google Scholar 

  • Miller DP, Howell GS (1996) Effect of shoot number on potted grapevines. I. Canopy development and morphology. Am J Enol Vitic 47:244–250

    Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Developmental physiology: the vegetative grapevine. In: Mullins MG, Bouquet B, Williams LE (eds) Biology of the grapevine. Cambridge University Press, Cambridge, pp 80–111

    Google Scholar 

  • Murisier F, Zufferey V, Triacca M (2007) Influence de l'ecartement des rangs et de la hauteur de la haie foliaire sur le comportement agronomique et le développement racinaire de la vigne. Revue Suisse Vitic Arboric Hortic 39:361–364

    Google Scholar 

  • Poni S, Intrieri C, Silvestroni O (1992) Interactions of leaf age, fruiting and exogenous cytokinins in the gas-exchange of Sangiovese grapevines. Quad Vitic Enol Univ Torino 16:233–238

    Google Scholar 

  • Reynier A (2001) Manual de Viticultura. Ed Mundiprensa (6ª Edición) 497 pp

    Google Scholar 

  • Sanchez de Miguel 2007. Producción y distribución de fotoasimilados en la vid (Vitis vinifera L.) durante el periodo de maduración. Cambios en la respuesta fotosintética a la luz de las hojas por factores biológicos, ambientales y culturales. Doctoral Thesis at Universidad Politécnica de Madrid

    Google Scholar 

  • Schneider C (1992) Quelles techniques de conduite adopter pour favoriser la qualité et maitriser la production. Sitevinitech, Bordeaux, pp 265–276

    Google Scholar 

  • Schultz HR (1992) An empirical model for the simulation of leaf appearence and leaf area development of primary shoots of several gravevine (V. vinifera L.) canopy-systems. Sci Hortic 52:179–200

    Article  Google Scholar 

  • Schultz HR (1996) Leaf absorptance of visible radiation in Vitis vinifera L: estimates of age and shade effects with a simple field method. Sci Hortic 66:93–102

    Article  Google Scholar 

  • Schultz HR, Matthews MA (1993) Growth, osmotic adjustment, and cell-wall mechanics of expanding grape leaves during water deficits. Crop Sci 33:287–294

    Article  Google Scholar 

  • Shaulis NJ, Amberg H, Crowe D (1966) Response of concord grapes to light, exposure and geneva double curtain training. Am J Enol Vitic 89:268–280

    Google Scholar 

  • Shaulis N, May P (1971) Response of Sultana vines to training on a divided canopy and to shoot crowding. Am J Enol Vitic 22: 215–222

    Google Scholar 

  • Singh BP, McKinion JM, Sequeira RA, Reddy VR, Pachepsky LB, Acock B, Boote KJ, Pickering NB, DeJong TM, Grossman YL (1994) Modeling photosyntehesis and carbon partitioning. Hortic Sci 29(12):1411–1442

    Google Scholar 

  • Sipiora MJ (2005) Influencia de la densidad de pámpanos por metro de cordón sobre la variedad de vid (Vitis vinifera L) Tempranillo en secano y regadío. Comportamiento agronómico, fisiológico y modelos descriptivos del desarrollo de la vid. Doctoral Thesis at Universidad Politécnica de Madrid, p 256

    Google Scholar 

  • Smart RE (1973) Sunlight interception by vineyards. Am J Enol Vitic 24:141–147

    Google Scholar 

  • Smart RE (1987) The light quality environment of vineyards. OIV – 3º Symposium International sur la Physiologie de la Vigne, Bordeaux, pp 370–373

    Google Scholar 

  • Smart RE, Shaulis MJ, Lemom ER (1982) The effect of concord vineyard microclimate on yield I. The effects of pruning, training and shoot positioning on radiation microclimate. Am J Enol Vitic 33:99–108

    Google Scholar 

  • Smart RE, Robinson M (1991) Sunlight into wine. A handbook for winegrape canopy management. Adelaide, Winetitles, pp 88

    Google Scholar 

  • Wermelinger B, Koblet N (1990) Seasonal growth and nitrogen distribution in grapevine leaves, shoots and grapes. Vitis 29:15–26

    Google Scholar 

  • Williams LE (1987) Growth of Thompson seedless grapevines: I – Leaf area development and dry weight distribution. J Am Soc Hortic Sci 112:325–330

    Google Scholar 

  • Williams LE, Biscay PJ, Smith RJ (1987) Effect of interior canopy defoliation on berry composition and potassium distribution in Thompson Seedless grapevines. Am J Enol Vitic 38(4):287–292

    Google Scholar 

  • Williams LE, Matthews M A (1990) Grapevine. Irrigation of Agricultural Crops. Agronomy monograph. 30:1019–1055

    Google Scholar 

  • Zufferey V (2000) Echanges gazeux des feuilles chez Vitis vinifera L. (cv. Chasselas) en fonction des paramètres climatiques et physiologiques et des modes de conduite de la vigne. Doctoral Thesis at Zurich, Ecole Polytechnique Federale

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Sánchez-de-Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sánchez-de-Miguel, P., Baeza, P., Junquera, P., Lissarrague, J.R. (2010). Vegetative Development: Total Leaf Area and Surface Area Indexes. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_3

Download citation

Publish with us

Policies and ethics