Skip to main content

Expression Analysis in Grapevine by In Situ Hybridization and Immunohistochemistry

  • Chapter
  • First Online:
Methodologies and Results in Grapevine Research

Abstract

In situ hybridization (ISH) associated to immunohistochemistry has become a powerful tool for the examination of gene expression. Application of these techniques in grapevine tissues is limited mainly because of technical difficulties with this plant material. Here we present detailed protocols for ISH and immunohistochemistry, recommended controls and troubleshooting, along with examples of several applications to grapevine tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Alkaline phosphatase

DIG:

Digoxigenine

GS primer:

Gene specific primer

ISH:

In situ hybridization

NTE:

NaCl-Tris-EDTA buffer

PAL:

Phenylalanine ammonia-lyase

PBS:

Phosphate buffer saline

Rib:

26S ribosomic RNA

SSC:

Saline sodium citrate

STS:

Stilbene synthase

References

  • Bravo JM, Campo S, Murillo I, Coca M, San Segundo B (2003) Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol Biol 52:745–759

    Article  PubMed  CAS  Google Scholar 

  • Brugeon J (1996) In situ hybridization to RNA in plant biology. In: Nicole M, Gianinazzi-Pearson V (eds) Histology, ultrastructure and molecular cytology of plant – microorganism interactions. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Burger AL, Zwiegelaar JP, Botha FC (2004) Characterisation of the gene encoding the Merlot ripening-induced protein 1 (mrip 1): evidence that this putative protein is a distinct member of the plant proline-rich protein family. Plant Sci 167:1075–1089

    Article  CAS  Google Scholar 

  • Cadot Y, Miñana-Castelló MT, Chevalier M (2006) Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. J Agric Food Chem 54:9206–9215

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Cubas P, Martinez-Zapater JM (2002) VFL, the grapevine Floricaula/Leafy ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol 130:68–77

    Article  PubMed  CAS  Google Scholar 

  • Cox KH, Goldberg RB (1988) Analysis of plant gene expression. In: Shaw CH (ed) Plant molecular biology: a practical approach. Oxford IRL Press, Oxford

    Google Scholar 

  • Diakou P, Carde JP (2001) In situ fixation of grape berries. Protoplasma 218:225–235

    Article  PubMed  CAS  Google Scholar 

  • Derckel JP, Audran JC, Haye B, Lambert B, Legendre L (1998) Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and β-1,3-glucanases of ripening grape berries. Physiol Plant 104:56–64

    Article  CAS  Google Scholar 

  • Famiani F, Walker RP, Técsi L, Chen ZH, Proietti P, Leegood RC (2000) An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. J Exp Bot 345:675–683

    Article  Google Scholar 

  • Fernandez L, Torregrosa L, Terrier N, Sreekantan L, Grimplet J, Davies C, Thomas MR, Romieu C, Ageorges A (2007) Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol Biol 63:307–323

    Article  PubMed  CAS  Google Scholar 

  • Fouquet R, Léon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with etephon. Plant Pathology 48:325–336.

    Article  CAS  Google Scholar 

  • Jackson DI, Coombe BG (1995) Early bunchstem necrosis-a matter of nomenclature. Am. J Enol Vit 46:579–580

    Google Scholar 

  • Lebon G, Duchêne E, Brun O, Clément C (2005) Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. Ann Bot 95:943–948

    Article  PubMed  CAS  Google Scholar 

  • Meier U (2001) Grapevine. In: Meier U (ed) Growth stages of mono- and dicotyledonous plants. BBCH monograph, federal biological research centre for agriculture and forestry. Blackwell Wissenschafts-verlag, Berlin

    Google Scholar 

  • Reinold S, Halbrock K (1996) Biphasic temporal and spatial induction patterns of defense-related mRNAs and proteins in fungus-infected parsley leaves. Plant Physiol 112:131–140

    PubMed  CAS  Google Scholar 

  • Suzuki T, Akimoto M, Mandai M, Takahashi M, Yoshimura N (2005) A new PCR-based approach for the preparation of RNA probe. Biochem Biophysic Methods 62:251–258

    Article  CAS  Google Scholar 

  • Tavares LS, de O Santos M, Viccini LF, Moreira JS, Miller RNG, Franco OL (2008) Biotechnological potential of antimicrobial peptides from flowers. Peptides 29:1842–1851

    Article  PubMed  CAS  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  PubMed  CAS  Google Scholar 

  • Vignault C, Vachaud M, Cakir B, Glissant D, Dedaldechamp F, Buttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Walker RP, Chen ZH, Técsi L, Famiani F, Lea PJ, Leegood RC (1999) Phosphoenolpyruvate carboxykinase plays a role in interactions of carbon and nitrogen metabolism during grape seed development. Planta 210:9–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the EMOA laboratory UMR INRA FARE 614 Reims for giving us access to their confocal equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Mazeyrat-Gourbeyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Colas, S. et al. (2010). Expression Analysis in Grapevine by In Situ Hybridization and Immunohistochemistry. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_26

Download citation

Publish with us

Policies and ethics