Skip to main content

Variable Rate Application of Fungicides

  • Chapter
  • First Online:
Precision Crop Protection - the Challenge and Use of Heterogeneity

Abstract

Plant diseases often occur in patches within the field. But real-time sensor technology for automatic disease detection which would be a prerequisite for demand related fungicide application is commercially not yet available. In heterogeneous fields growth conditions vary greatly due to soil quality differences. Consequently there exist subareas with varying biomass which affect yield at harvest time. In high biomass and yield subareas the Leaf Area Index (LAI) is greater than in low biomass subareas. In cereals LAI can serve as a parameter to adapt application rate to the growth differences in fields. Sensor controlled variable rate field sprayer technology therefore meets the economic and ecological demands of process optimisation in the production of primary plant goods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1972) Biometrische Versuchsplanung. VEB Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  • Basso B, De Vita P, Basso F et al (2003) Assessing and modelling spatial variability of yield and grain quality of durum wheat under extreme dry conditions. In: Stafford JV, Werner A (eds), Precision agriculture. Wageningen Academic Publishers, Wageningen, pp 53–59

    Google Scholar 

  • Bjerre KD (1999) Disease maps and site-specific fungicide application in winter wheat. In: Stafford JV (ed.) Precision agriculture. Sheffield Academic Press, Sheffield, pp 495–504

    Google Scholar 

  • Bjerre KD, Secher BJM (1998) Field experience with site-specific application of fungicides to winter wheat. In: Brighton crop Protection Conference – Pests and Diseases. British Crop Protection Council, Farnham, pp 987–992

    Google Scholar 

  • Broscious SC, Frank JA, Frederick JR (1985) Influence of winter wheat management practices on the severity of powdery mildew and Septoria blotch in Pennsylvania. Phytopathology 75:538–542

    Article  Google Scholar 

  • Burth U, Hartleb W, Hartmann W, Hamann W (1990) Zur variablen, situationsbezogenen Bemessung der Aufwandmenge bei der Applikation von Pflanzenschutzmitteln. Nachrichtenbl. PflSchutzd. DDR 44:194–196

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley Interscience, New York

    Google Scholar 

  • Dammer KH (1988) Untersuchungen zur Auslese von Einzelpflanzen im Winterroggen mit Resistenz gegenüber Pseudocercosporella herpotrichoides (Fron) Deighton. PhD thesis, Martin-Luther-Universität Halle-Wittenberg

    Google Scholar 

  • Dammer KH (1999) Analyse und Darstellung der Dispersion von Schaderregern sowie Möglichkeiten der Stichprobenahme bei aggregiertem Auftreten. Eigenverlag, Kropstädt

    Google Scholar 

  • Dammer KH (2005) Demonstration der Langzeitwirkung bedarfsorientierter Fungizidbehandlung mit dem CROP-Meter. Bornimer Agrartechnische Berichte, Heft 41, Leibniz-Institut für Agrartechnik, Potsdam-Bornim

    Google Scholar 

  • Dammer KH, Ehlert D (2006). Variable-rate fungicide spraying in cereals using a plant cover sensor. Prec Agric 7:137–148

    Article  Google Scholar 

  • Dammer KH, Thöle H, Volk T, Hau B (2009) Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Prec Agric 10:431–442

    Article  Google Scholar 

  • Dammer KH, Wollny J, Giebel, A (2008) Estimation of leaf area index in cereal crops for variable rate fungicide spraying. Eur J Agron 28:351–360

    Article  Google Scholar 

  • Ehlert D, Dammer KH (2006) Widescale testing of the CROP-Meter for site-specific farming. Prec Agric 7:101–115

    Article  Google Scholar 

  • Ewaldz NAT (2000) Radiometric readings as a tool for predicting optimal fungicide dose in winter wheat. Z PflKrankh PflSchutz 107:594–604

    CAS  Google Scholar 

  • Fleischer SJ, Blom PE, Weisz R (1999) Sampling in precision IPM: when the objective is a map. Phytopathology 89:1112–1118

    Article  PubMed  CAS  Google Scholar 

  • Gent MPN (1994) Photosynthate reserves during grain filling in winter wheat. Agron J 86: 159–167

    Article  Google Scholar 

  • Guérif M, Hollecker D, Beaudoin N et al (2003) Site specific calibration of a crop model by assimilation of remote sensing data: a tool diagnosis and recommendation in precision agriculture. In: Stafford JV, Werner A (eds.), Precision agriculture. Wageningen Academic Publishers, Wageningen, pp 253–258

    Google Scholar 

  • Hiks SK, Lascano RJ (1995) Estimation of leaf-area index for cotton canopies using the LA-COR LAI-2000 plant canopy analyzer. Agron J 87:458–464

    Article  Google Scholar 

  • Hloben P, Sökefeld M, Schulze Lammers P (2006) Untersuchungen der Verzögerungszeiten von Direkteinspeisungssystemen für die teilflächenspezifische Applikation von Herbiziden. Agrartech Forsch 12:14–18

    Google Scholar 

  • Hughes G, Madden LV (1995) Some methods allowing for aggregated pattern of disease incidence in the analysis of data from designed experiments. Plant Pathol 44:927–943

    Article  Google Scholar 

  • Jeger MJ (1989) Spatial components of plant disease epidemics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Kleinhenz B, Jörg E, Kluge E, Rossberg D (1995) PASO – Rechnergestützte Entscheidungshilfen für den Pflanzenschutz. Ges Pflanzen 47:222–230

    Google Scholar 

  • Lisso H, Trunk K, Jäger S (2003) Drei Beispiele für die Umsetzung. In: Haser G (ed), Zukunftsträchtiger Ackerbau – Systeme der Computer- und GPS-gestützten teilflächenspezifischen Bewirtschaftung praxisnah bewertet. Deutscher Bauernverlag, Berlin

    Google Scholar 

  • Lovell DJ, Parker SR, Hunter T et al (1997) Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathol 46:126–138

    Article  Google Scholar 

  • Moran MS (2000) New imaging sensor technologies suitable for agricultural management. Asp Appl Biol 60:1–10

    Google Scholar 

  • Murray GM, Ellison PJ, Watson A, Cullis BR (1994) The relationship between wheat yield and stripe rust as affected by length of epidemic and temperature at the grain development stage of crop growth. Plant Pathol 43:397–405

    Article  Google Scholar 

  • Newe M, Meier H, Johnen A, Volk T (2003) proPlant expert.com: the online consultation system on crop protection in cereals, rapeseed, potatoes and sugar beet: a concept that meets the requirements of farmers and consultants in both Germany and Europe. EPPO Bull 33:443–449

    Article  Google Scholar 

  • Nielson HE (1995) Remote sensing and image analysis in plant pathology. Annu Rev Phytopathol 15:489–527

    Article  Google Scholar 

  • Oerke EC, Dehne HW (1997) Global crop production and the efficacy of crop protection – Current situation and future trends. Eur J Plant Pathol 103:203–215

    Article  Google Scholar 

  • Park RF, Ash GJ, Rees RG (1992) Effect of temperature on the response of some Australian wheat cultivars to Puccinia striiformis f.sp. tritici. Mycol Res 96:166–170

    Article  Google Scholar 

  • Paveley ND, Clark WS, Sylvester-Bradley R et al (1996) Responding to inter- and intra-field variation to optimise foliar disease management in wheat. Brighton Crop Protection Conference, Pests and Diseases, Brighton, pp 1227–1234

    Google Scholar 

  • Rockwell AD, Ayers PD (1996) A variable rate, direct nozzle injection field sprayer. Appl Engin Agric 12:531–538

    Google Scholar 

  • Rozalski K, Pudelko J, Skrzypczak G (1998) Disease incidence in winter wheat and spring triticale as influenced by crop protection and nitrogen. Progr Plant Prot 38:551–554

    Google Scholar 

  • Secher BJM (1997) Site specific control of diseases in winter wheat. Aspects Appl Biol 48:57–65

    Google Scholar 

  • Sentelhas PC, Pedro MJ, Felicio JC (1993) Effects of different conditions of irrigation and crop density on microclimate and occurrence of spot blotch and powdery mildew. Bragantia 52:45–52

    Article  Google Scholar 

  • Stroppiana D, Boschetti M, Confalonieri R et al (2006) Evaluation of LAI-2000 for leaf area index monitoring in paddy rice. Field Crops Res 99:167–170

    Article  Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, London

    Google Scholar 

  • Welles JM, Norman JM (1991) Instrument for indirect measurement of canopy architecture. Agron J 83:818–825

    Article  Google Scholar 

  • West JS, Bravo C, Oberti R et al (2003) The potential of optical canopy measurement for targeted control of field crop diseases. Annu Rev Phytopathol 41:593–614

    Article  PubMed  CAS  Google Scholar 

  • Wiegand CL, Maas SJ, Aase JK et al (1992) Multisite analyses of spectral-biophysical data for wheat. Rem Sens Environ 42:1–21

    Article  Google Scholar 

  • Wilhelm WW, Ruwe K, Schlemmer MR (2000) Comparison of three leaf area index meters in a corn canopy. Crop Sci 40:1179–1183

    Article  Google Scholar 

  • Wollny J, Dammer KH, Hau B et al (2007) Site-specific disease control in wheat by combining the CROP-Meter with the decision support system proPlant. In: Stafford JV (ed) Precision agriculture ’07. Proceedings of the 2nd european conference on precision agriculture, Wageningen Academic Publishers, pp 783–789

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Dammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dammer, KH. (2010). Variable Rate Application of Fungicides. In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_22

Download citation

Publish with us

Policies and ethics