Skip to main content

Variable Rate Technology for Herbicide Application

  • Chapter
  • First Online:
Precision Crop Protection - the Challenge and Use of Heterogeneity

Abstract

Variable rate technology (VRT ) is used for the application of various agricultural inputs in order to respond adequately to the within-field variability of environmental factors like soil properties, incidence of pests and crop parameters. The areas in plant production in which VRTs are used are highlighted. For the variable rate application of herbicides commercial as well as research solutions are described. The use of VRT for herbicide treatment with regard to pre-emergence and post-emergence applications and the requirements are described. The potential of further herbicides savings due to an additional variation of herbicidal ingredients in consideration of herbicide sensitivity of single weed species and groups of weed species, respectively is shown and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnhisel RI, Bitzer MJ, Grove JH, Shearer SA (1997) Agronomic benefits of varying corn seed populations: a central Kentucky study. In: Proceedings site-specific management for Agriculture systems. Third International Conference. American Society of Agronomy, Madison, pp 957–966

    Google Scholar 

  • Bitzer MJ, Barnhisel RI, Grove, JH (1996) Varying corn populations according to depth of top soil. Proceedings of the 1996 information Agriculture Conference, Urbana

    Google Scholar 

  • Blumhorst MR, Weber JB, Swain LR (1990) Efficacy of selected herbicides as influenced by soil properties. Weed Technol 4:279–283

    CAS  Google Scholar 

  • Brown RB, Steckler J-PGA, Anderson GW (1994) Remote sensing for identification of weeds in no-till corn. Trans ASAE 37:297–302

    Google Scholar 

  • Bui QD (2005) VariTarget-A new nozzle with variable flow rate and droplet optimization. ASAE paper no 051125. Tampa

    Google Scholar 

  • Christensen S (1994) Crop weed competition and herbicide performance in cereal varieties and species. Weed Res 34:29–37

    Article  Google Scholar 

  • Christensen S, Heisel T (1998) Patch spraying using historical, manual and real-time monitoring of weeds in cereals. J Plant Dis Protect XVI (special issue): 257–263

    Google Scholar 

  • Dammer KH, Ehlert D (2006) Variable-rate fungicide spraying in cereals using plant cover sensor. Prec Agric 7:137–148

    Article  Google Scholar 

  • Dieleman JA, Mortensen, DA (1998) Influence of weed biology and ecology on development of reduced dose strategies for integrated weed management systems. In: Hatfield JL, Buhler DD, Stewart BA (eds) Integrated weed and soil management. Ann Arbor Press, Inc, Chelsea, pp 333–362

    Google Scholar 

  • Dogan MN, Hurle K (1998) Einfluss des Entwicklungsstadiums und von Umweltfaktoren auf die Wirksamkeit reduzierter Aufwandmengen von Tribenuron-methyl (Pointer) auf Chenopodium album L. Z PflKrankh PflSchutz XVI (Sdh), pp 673–679

    Google Scholar 

  • Ehlert D (2000) Pflanzenmasseerfassung mit mechanischen Sensoren. In: VDI-MEG-Tagung Landtechnik, 10./11.10.2000, Braunschweig, pp 289–294

    Google Scholar 

  • Ehlert D, Schmerler J, Völker U (2004) Variable rate nitrogen fertilization of winter wheat based on a crop density sensor. Prec Agric 5:263–273

    Article  Google Scholar 

  • Gerhards R, Christensen S (2003) Real time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res 43:385–392

    Article  Google Scholar 

  • Gerhards R, Oebel H (2006) Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res 46:185–193

    Article  Google Scholar 

  • Gerhards R, Sökefeld M (2003) Precision farming in weed control – system components and economic benefits. In Stafford J, Werner A (eds) Precision agriculture, Wageningen Academic Publishers, Wageningen, pp 229–234

    Google Scholar 

  • Gerhards R, Sökefeld M (2001) Sensor systems for automatic weed detection. Proceedings of the BCPC Conference – Weeds, pp 827–834

    Google Scholar 

  • Gerhards R, Sökefeld M, Timmermann C et al (1999) Results of a four year study on site-specific herbicide application. In Stafford JV (ed) Precision agriculture ’99, Vol 2. Sheffield Academic, Sheffield, pp 689–697

    Google Scholar 

  • Gerhards R, Sökefeld M, Timmermann C et al (2002) Site-specific weed control in maize, sugar beet, winter wheat and winter barley. Prec Agric 3:25–35

    Article  Google Scholar 

  • Gerhards R, Wyse-Pester DY, Mortensen DA (1997) Characterizing spatial stability of weed populations using interpolated maps. Weed Sci 45:108–119

    CAS  Google Scholar 

  • Giles DK, Henderson GW, Funk K (1996) Digital control of flow rate and spray droplet size from agricultural nozzles for precision chemical application. In: Robert PC et al (eds) Proceedings of the 3rd International Conference on Precision Agriculture, Madison, pp 729–738

    Google Scholar 

  • GopalaPillai S, Tian L, Zheng J (1999) Evaluation of a flow control system for site-specific herbicide applications. Trans ASAE 42:863–870

    Google Scholar 

  • Heisel T, Christensen S, Walter AM (1999) Whole-field experiments with site-specific weed management. In: Stafford JV (ed) Precision agriculture ’99, Vol 2. Sheffield Academic, Sheffield, pp 759–768

    Google Scholar 

  • Jensen PK, Kudsk P (1988) Prediction of herbicide activity. Weed Res 28:473–478

    Article  CAS  Google Scholar 

  • Jurado-Expósito M, López-Granados F, González-Andújar JL, Garcia-Torres L (2004) Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. Eur J Agron 21:287–296

    Article  Google Scholar 

  • Kitchen NR, Sudduth KA, Drummond ST (1999) Soil electrical conductivity as a crop productivity measure for claypan soils. J Prod Agric 12:607–617

    Google Scholar 

  • Koller M, Lanini WT (2005) Site-specific herbicide applications based on weed maps provide effective control. Cali Agric 59:182–187

    Article  Google Scholar 

  • Kudsk P (1989) Experiences with reduced herbicide doses in Denmark and the development of the concept of factor-adjusted doses. Proceedings of the BCPC Conference, Weeds, pp 545–554

    Google Scholar 

  • Link A, Panitzki M, Reusch S (2002) Hydro N-Sensor: tractor mounted sensing for variable N fertilization. Proceedings of the 6th International Conference on Precision Agriculture, pp 1012–1018

    Google Scholar 

  • Maguire S, Earl R, Smith DF, Cripsey P, Godwin RJ (2003) Technology for variable rate precision drilling of onions. In: Stafford J, Werner A (eds) Precision agriculture. Wageningen Academic Publishers, Wageningen, pp 373–378

    Google Scholar 

  • Marshall EJP (1988) Field-scale estimates of grass populations in arable land. Weed Res 28: 191–198

    Article  Google Scholar 

  • Mohammadzamani D, Minaei S, Alimardani R et al (2009) Variable rate herbicide application using the global positioning system for generating a digital management map. Int J Agric Biol 11:178–182

    Google Scholar 

  • Mortensen DA, Dieleman JA, Johnson GA (1998) Weed spatial variation and weed management. In: Hatfield JL, Buhler DD, Stewart BA (eds) Integrated weed and soil management. Ann Arbor Press, Inc, Chelsea, pp 293–309

    Google Scholar 

  • Perry C, Pocknee S, Hansen O (2003) A variable rate pivot irrigation control system. In: Stafford J, Werner A (eds) Precision agriculture. Wageningen Academics Publishers, Wageningen, pp 539–544

    Google Scholar 

  • Schächtl J, Huber G, Maidl FX, Sticksel E (2005) Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Prec Agric 6:143–156

    Article  Google Scholar 

  • Stone ML, Giles DK, Dieball KJ (1999) Distributed network system for control of sprayer droplet size at and application rate for precision chemical application. ASAE Paper No 99-3112, St. Joseph

    Google Scholar 

  • Volk T, Leithold P (2006) Site-specific application of growth regulators in winter wheat with the yara N-sensor and proplant decision support system for growth regulators. Mitt Biol Bundesanst Land- und Forstwirtsch 400, p 68

    Google Scholar 

  • Walker JT, Bansal RK (1999) Development and characterization of variable orifice nozzles for spraying agro-chemicals. ASAE Paper No 99-1008. St. Joseph

    Google Scholar 

  • Walter AM, Christensen S, Heisel T (1997) Patch spraying using weed maps from previous years. Proceedings of the 10th EWRS (Eur Weed Res Soc) Symposium 1997, Poznan, p 141

    Google Scholar 

  • Wartenberg G, Dammer KH (2002) Erfahrungen bei der Verfahrensentwicklung zur teilschlagspezifischen Herbizidanwendung in Echtzeit. Z PflKrankh PflSchutz XVIII (Sdh):443–450

    Google Scholar 

  • Weber JB, Tucker MR, Isaac RA (1987) Making herbicide rate recommendations based on soil tests. Weed Technol 1:41–45

    CAS  Google Scholar 

  • Weis M, Gerhards R (2007) Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control. In: JV Stafford (ed) Precision agriculture ’07, Proceedings of the 6th european conference on Precision Agriculture, Wageningen Academic Publishers, Wageningen, pp 537–544

    Google Scholar 

  • Western NM, Hislop EC, Herrington PJ, Jones EI (1989) Comparative drift measurements for BCPC reference hydraulic nozzles and for an Airtec Twin–Fluid nozzle under controlled conditions. Proceedings of the BCPC Conference, Weeds, pp 641–648

    Google Scholar 

  • Williams MM, Mortensen DA, Waltman WJ, Martin AR (2002) Spatial inference of herbicide bioavailability using a geographic information system. Weed Technol 16:603–611

    Article  Google Scholar 

  • Wilson BJ., Brain P (1991) Long-term stability of distribution of Alopecurus myosuroides Huds. within cereal fields. Weed Res 31:367–373

    Article  Google Scholar 

  • Wollenhaupt NC, Wolkowski RP, Clayton MK (1994) Mapping soil test phosphorus and potassium for variable-rate fertilizer application. J Prod Agric 7:441–448

    Google Scholar 

  • Wyse-Pester DY, Mortensen DA, Gotway CA (1995) Statistical methods to quantify spatial stability of weed population. Proc North Cent Weed Control Conf 50:512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Sökefeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sökefeld, M. (2010). Variable Rate Technology for Herbicide Application . In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_21

Download citation

Publish with us

Policies and ethics