Skip to main content

Potential of Digital Thermography for Disease Control

  • Chapter
  • First Online:
Precision Crop Protection - the Challenge and Use of Heterogeneity

Abstract

Infrared thermography is highly suitable for the detection of disease-induced changes in plant transpiration and water status. Depending on the host-pathogen system diseases can be detected at various stages of development. Pathogens attacking plant roots or colonizing the vascular system affect water uptake and translocation within the plant and cause a decrease in transpiration associated with an increase in leaf temperature . Diseases causing early malfunction of stomatal regulation produce pre-symptomatic modifications in transpiration, some affect cuticular transpiration when visible symptoms appear or only in later stages when tissue is severely damaged. Diseases without or with only minor effects on transpiration cannot be detected thermographically. In some host-pathogen systems a close relationship between disease severity and thermal effect exist which may be used for disease quantification. The low specificity of the signal limits the use of thermography for disease identification, however, this may be compensated by the use of patterns of leaf temperature. IR remote sensing has a large potential in disease forecasting and the definition of management zones because of its high sensitivity to changes in plant water relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldea M, Hamilton JG, Resti et al (2006) Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 149: 221–232

    Article  PubMed  Google Scholar 

  • Ayres PG, Jones P (1975) Increased transpiration and the accumulation of root absorbed 86Rb in barley leaves infected by Rhynchosporium secalis (leaf blotch). Physiol Plant Pathol 7: 49–58

    Article  Google Scholar 

  • Bassanezi RB, Amorim L, Bergamin FA et al (2002) Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. J Phytopathol 150:37–47

    Article  CAS  Google Scholar 

  • Boccara M, Boue C, Garmier M et al (2001) Infra-red thermography revealed a role for mitochondria in presymptomatic cooling during harpin-induced hypersensitive response. Plant J 28:663–670

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, De Boever F, Van der Straeten D (2002) Infrared detection of early biotic stress in plants. Thermology Int 12:100–106

    Google Scholar 

  • Chaerle L, De Boever F, van Montagu M et al (2001) Thermographic visualization of cell death in tobacco and Arabidopsis. Plant Cell Environ 24:15–25

    Article  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E et al (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45:887–896

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Lenk S, Leinonen I et al (2009) Multi-sensor imaging of plant stresses: towards the development of a stress-catalogue for stress diagnosis. Biotechol J. Published online: Jun 25 2009. doi:10.1002/biot.200800242

    Google Scholar 

  • Chaerle L, Pineda M, Romero-Aranda R et al (2006) Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. Plant Cell Physiol 47:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Van Caeneghem W, Messens E et al (1999) Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnol 17:813–816

    Article  CAS  Google Scholar 

  • Chaerle L, Van der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Van der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta 1519:153–166

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Alchanatis V, Meron M et al (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56:1843–1852

    Article  PubMed  CAS  Google Scholar 

  • Duchesne J, Lili Z, Nicolas H et al (1992) Elaboration of a pathological stress index from thermal infrared measurements. AAB Symposium, Rennes, 8–10 Sept, pp 49–50

    Google Scholar 

  • Eyal Z, Wise GS, Blum A (1989) Canopy temperature as a correlative measure for assessing host response to Septoria tritici blotch of wheat. Plant Dis 73:468–471

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomata conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Hatfield JL (1990) Remote detection of crop stress: Application to plant pathology. Phytopathology 80:37–39

    Article  Google Scholar 

  • Inoue Y, Kimball BA, Jackson RD et al (1990) Remote estimation of leaf transpiration rate and stomatal resistance based on infrared thermometry. Agric For Meteorol 51:21–33

    Article  Google Scholar 

  • Jones HG (1992) Plant and microclimate, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones HG (1999) Use of infrared thermography for estimation of stomatal conductance in irrigation scheduling. Agric For Meteorol 95:135–149

    Article  Google Scholar 

  • Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–163

    Article  Google Scholar 

  • Jones HG, Schofield P (2008) Thermal and other remote sensing of plant stress. Gen Appl Plant Physiol 34(1–2), 19–32

    Google Scholar 

  • Jones HG, Stoll M, Santoa T et al (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53:2249–2260

    Article  PubMed  CAS  Google Scholar 

  • Körner C (1994) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 119–140

    Google Scholar 

  • Kümmerlen B, Dauwe S, Schmundt D, Schurr U (1999) Thermography to measure water relations of plant leaves. In: Jähne B (ed) Handbook of computer vision and applications, vol 3. Academic Press, London, pp 636–637

    Google Scholar 

  • Lenthe JH (2005) Erfassung befallsrelevanter Klimafaktoren in Weizenbeständen mit Hilfe digitaler Infrarot-Thermografie. PhD thesis, University of Bonn, Bonn

    Google Scholar 

  • Lenthe JH, Oerke EC, Dehne HW (2007) Digital infrared thermography for monitoring canopy health of wheat. Prec Agric 8:15–26

    Article  Google Scholar 

  • Lili Z, Duchesne J, Nicolas H et al (1991) Détection infrarouge thermique des maladies du blé d’hiver. Bull OEPP 21:659–672

    Article  Google Scholar 

  • Lindenthal M (2005) Visualisierung der Krankheitsentwicklung von Falschem Mehltau an Gurken durch Pseudoperonospora cubensis mittels Thermografie. PhD thesis, University of Bonn, Bonn

    Google Scholar 

  • Lindenthal M, Steiner U, Dehne HW et al (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95:233–240

    Article  PubMed  Google Scholar 

  • Meola C, Carlomagno GM (2004) Recent advances in the use of infrared thermography. Meas Sci Technol 15:R27–R58

    Article  CAS  Google Scholar 

  • Merlot S, Mustilli AC, Genty B et al (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  PubMed  CAS  Google Scholar 

  • Nicolas H (2004) Using remote sensing to determine of the date of a fungicide application on winter wheat. Crop Prot 23:853–863

    Article  Google Scholar 

  • Nicolas H, Rivoal R, Duchesne J et al (1991) Detection of Heterodera avenae infestations on winter wheat by radiothermometry. Revue Nematol 14:285–290

    Google Scholar 

  • Nilsson HE (1991) Hand-held radiometry and IR-thermography of plant diseases in field plots experiments. Int J Remote Sens 12:545–557

    Article  Google Scholar 

  • Nilsson HE (1995) Remote sensing and image analysis in plant pathology. Annu Rev Phytopathol 33:489–527

    Article  PubMed  CAS  Google Scholar 

  • Oerke E-C, Lindenthal M, Fröhling P et al (2005) Digital infrared thermography for the assessment of leaf pathogens. In: Stafford JV (ed) Precision agriculture ’05. Proceedings of 5th European Conference on Precision Agriculture. Wageningen Academic Publishers, Wageningen, pp 91–98

    Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  PubMed  CAS  Google Scholar 

  • Pinter PJ, Stanghellini ME, Reginato RJ et al (1979) Remote detection of biological stress in plants with thermography. Science 205:585–587

    Article  PubMed  Google Scholar 

  • Santrucek J, Simanova E, Karbulkova J et al (2004) A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. J Exp Bot 55:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Schmitz A, Kiewnick S, Schlang J et al (2004) Use of high resolution digital thermography to detect Heterodera schachtii infestation in sugar beets. Comm Appl Biol Sci 69:359–363

    CAS  Google Scholar 

  • Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 2B. Springer, Berlin, pp 153–179

    Google Scholar 

  • Schreiber L, Riederer M (1996) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 107:426–432

    Article  Google Scholar 

  • Smith RCG, Heritage AD, Stapper M et al (1986). Effect of stripe rust (Puccinia striiformis West.) and irrigation on the yield and foliage temperature of wheat. Field Crops Res 14:39–51

    Article  Google Scholar 

  • Stenzel I, Steiner U, Dehne HW, Oerke EC (2007) Occurrence of fungal leaf pathogens in sugar beet fields monitored with digital infrared thermography. In: Stafford JV (ed) Precision agriculture ’07. Papers presented at the 6th European Conference on Precision Agriculture. Wageningen Academic Publishers, pp 529–535

    Google Scholar 

  • Stoll M, Schultz HR, Baecker G et al (2008b) Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Prec Agric 9:407–417

    Article  Google Scholar 

  • Stoll M, Schultz HR, Berkelmann-Loehnertz B (2008a) Exploring the sensitivity of thermal imaging for Plasmopara viticola pathogen detection under different water status. Funct Plant Biol 35:281–288

    Article  Google Scholar 

  • Wagner AM, Krab K, Wagner MJ, Moore AL (2008) Regulation of thermogenesis in flowering Araceae: The role of the alternative oxidase. Biochim Biophys Acta 1777:993–1000

    Article  PubMed  CAS  Google Scholar 

  • West JS, Bravo C, Oberti R et al (2003) The potential of optical canopy measurement for targeted control of field crop diseases. Annu Rev Phytopathol 41:593–614

    Article  PubMed  CAS  Google Scholar 

  • Wright KN, Duncan GH, Pradel KS et al (2000). Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol 123:1375–1385

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich-Christian Oerke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oerke, EC., Steiner, U. (2010). Potential of Digital Thermography for Disease Control. In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_11

Download citation

Publish with us

Policies and ethics