Skip to main content

Taxonomic Discrimination of Phytoplankton by Spectral Fluorescence

  • Chapter
  • First Online:
Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

Chlorophyll fluorescence techniques are used widely in both laboratory and field studies to assess the abundance and physiological responses of cyanobacteria, microalgae, macroalgae and vascular plants, as described in other chapters in this volume. Most of the instruments used in these studies excite fluorescence in the blue region of the spectrum and measure chlorophyll fluorescence (peak ca. 685 nm) at ambient temperature. Fluorescence is generally detected using a photomultiplier tube (PMT), which is very sensitive to intensity but insensitive to spectral quality. Cross-talk between the light source used to excite fluorescence and the detector is prevented by the use of cut-off filters on both the emitter and the PMT, or by the use of emitters with narrow wavebands, such as light-emitting diodes (LEDs) or lasers, and a long-pass filter on the detector. With the advent of LEDs, which have a very high efficiency (intensity of light output per unit power input) compared to the xenon flash-lamps used in many older instruments, commercially-available fluorometers can have very low power demands and be both small and sensitive (detection limits are typically <1 mg m−3 of Chla). This makes them ideal for unattended monitoring such as on platforms, moorings or gliders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Abbreviations: AOA, Algae Online Analyzer (bbe Moldaenke); CCMP, Guillard-Provasoli Center for the Culture of Marine Phytoplankton (Boothbay Harbor, ME, USA); CFC, cellular fluorescence capacity, an analog of the maximum quantum yield of photosynthesis; Chla, b, c; chlorophylls a, b and c; DPS, de-epoxidation state; FRR fast repetition rate (fluorometry); LHC, light-harvesting complex; KE, saturating parameter of the growth-irradiance curve; MgDVP, Mg-3, 8-divinyl phaeoporphyrin a 5 monomethyl ester; NPQ, non-photochemical quenching; PAM, pulse amplitude modulated (fluorometry); PC, phycocyanin; PE, phycoerythrin; PPC, photoprotective carotenoids; PSC, photosynthetic carotenoids; PSI, photosystem I; PSII, photosystem II; SFS, spectral fluorescence signature(s)

References

  • Aberle N, Beutler M, Moldaenke C, Wiltshire KH (2006) ‘Spectral fingerprinting’ for specific algal groups on sediments in situ: a new sensor. Arch Hydrobiol 167:575–592

    CAS  Google Scholar 

  • Ahn Y-H, Bricaud A, Morel A (1992) Light backscattering efficiency and related properties of some phytoplankters. Deep Sea Res 39:1835–1855

    Google Scholar 

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73:139–148

    CAS  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll ­fluorescence spectroscopy, kinetics and imaging. In: Papa­georgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 447–461

    Google Scholar 

  • Alpine AE, Cloern JE (1985) Differences in in vivo fluorescence yield between three phytoplankton size classes. J Plankt Res 7:381–390

    Google Scholar 

  • Andersen RA, Bidigare RR, Keller MD, Latasa M (1996) A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep Sea Res 43:517–537

    CAS  Google Scholar 

  • Anning T, Harris G, Geider RJ (2001) Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillario­phyceae). Eur J Phycol 36:233–241

    Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96

    CAS  Google Scholar 

  • Arsalane W, Rousseau B, Duval J-C (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: competition between photoprotection and photoinhibition. Biochem Photobiol 60:237–243

    CAS  Google Scholar 

  • Babichenko S, Leeben A, Poryvkina L, van der Wagt R, de Vos F (1994) Fluorescent screening of phytoplankton and organic compounds in sea water. J Environ Monit 2:378–383

    Google Scholar 

  • Babichenko S, Kaitala S, Leeben A, Poryvkina L, Seppala J (1999) Phytoplankton pigments and dissolved organic matter distribution in the Gulf of Riga. J Mar Syst 23:69–82

    Google Scholar 

  • Babichenko S, Leeben A, Poryvkina L, van der Wagt R, de Voss F (2000) Fluorescent screening of phytoplankton and organic compounds in sea water. J Environ Monit 2:378–383

    CAS  Google Scholar 

  • Babin M (2008) Phytoplankton fluorescence: theory, current literature and in situ measurement. In: Babin M, Roesler CS, Cullen JJ (eds) Real-time coastal observing systems for ecosystem dynamics and harmful algal blooms. UNESCO Publishing, Paris, pp 237–280

    Google Scholar 

  • Beeler SooHoo J, Kiefer DA, Collins DJ, McDermid IS (1986) In vivo fluorescence excitation and absorption spectra of marine phytoplankton: I. Taxonomic characteristics and responses to photoadaptation. Plankton Res 8:197–214

    Google Scholar 

  • Benson EE, Cobb AH (1981) Pigment/protein complexes of the intertidal alga Codium fragile (Suringar) Hariot. New Phytol 88:627–632

    CAS  Google Scholar 

  • Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen U-P, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53

    CAS  Google Scholar 

  • Beutler M, Wiltshire KH, Arp M, Kruse J, Reineke C, Moldaenke C, Hansen U-P (2003) Reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. Biochim Biophys Acta 1604:33–46

    CAS  Google Scholar 

  • Beutler M, Wiltshire KH, Reineke C, Hansen U-P (2004) Algorithms and practical fluorescence models of the photosynthetic apparatus of red cyanobacteria and Cryptophyta designed for the fluorescence detection of red cyanobacteria and cryptophytes. Aquat Microb Ecol 35:115–129

    Google Scholar 

  • Bidigare RR (1989) Photosynthetic pigment composition of the brown tide alga: unique chlorophyll and carotenoid derivatives. In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel phytoplankton blooms: causes and impacts of recurrent brown tides and other unusual blooms. Springer, Berlin, pp 57–76

    Google Scholar 

  • Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In vivo absorption properties of algal pigments. SPIE 1302:290–302

    Google Scholar 

  • Bodemer U (2004) Variability of phycobiliproteins in cyanobacteria detected by delayed fluorescence excitation spectroscopy and its relevance for determination of phytoplankton composition of natural water samples. J Plankton Res 26:1147–1162

    CAS  Google Scholar 

  • Bouman H, Platt T, Sathyendranath S, Stuart V (2005) Dependence of light-saturated photosynthesis on temperature and community structure. Deep Sea Res 52:1284–1299

    Google Scholar 

  • Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J Geophys Res 109:C11010

    Google Scholar 

  • Buiteveld H, Hakvoort JHH, Donze M (1994) The optical properties of pure water. SPIE, Ocean Optics XIII

    Google Scholar 

  • Burger-Wiersma T, Post AF (1989) Functional analysis of the photosynthetic appratus of Prochlorothrix hollandica (Prochlorales), a Chlorophyll b containing procaryote. Plant Physiol 91:770–774

    CAS  Google Scholar 

  • Butler WL, Hopkins DW (1970a) An analysis of fourth derivative spectra. Photochem Photobiol 12:451–456

    Google Scholar 

  • Butler WL, Hopkins DW (1970b) Higher derivative analysis of complex absorption spectra. Photochem Photobiol 12:439–450

    Google Scholar 

  • Campbell D, Oquist G (1996) Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms. Plant Physiol 111:1293–1298

    CAS  Google Scholar 

  • Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56:277–289

    CAS  Google Scholar 

  • Wit CDv-D, Doust AB, van Stokkurn LHM, Dekker JP, Wilk KE, Curmi PMG, van Grondelle R (2008) Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte Chroomonas CCMP270 cells. Biophys J 94:2423–2433

    Google Scholar 

  • Chekalyuk AM, Hafez M (2008) Advanced laser fluorometry of natural aquatic environments. Limnol Oceanogr Methods 6: 591–609

    Google Scholar 

  • Chekalyuk AM, Hoge FE, Wright CW, Swift RN, Yungel JK (2000) Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics. Photosynth Res 66:45–56

    CAS  Google Scholar 

  • Chen ZQ, Hu CM, Comny RN, Muller-Karger F, Swarzenski P (2007) Colored dissolved organic matter in Tampa Bay, Florida. Mar Chem 104:98–109

    CAS  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: An oxytrophic procaryote containing divinyl-chlorophyll b. Arch Microbiol 157:297–300

    CAS  Google Scholar 

  • Clarke KR, Warwicke RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, PRIMER-E

    Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69

    Google Scholar 

  • Collier JL, Herbert SK, Fork DC, Grossman AR (1993) Changes in the cynaobacterial photosynthetic apparatus during acclimation to macronutrient deprivation. Photosynth Res 42:173–183

    Google Scholar 

  • Cowles TJ, Desiderio RA, Neuer S (1993) In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra. Mar Biol 115:217–222

    Google Scholar 

  • Cullen JJ, Renger EH (1979) Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton populations. Mar Biol 53:13–20

    CAS  Google Scholar 

  • Cullen JJ, Yang X, MacIntyre HL (1992) Nutrient limitation and marine photosynthesis. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 69–88

    Google Scholar 

  • Del Castillo CE, Coble PG, Morell JM, López JM, Corredor JE (1999) Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar Chem 66:35–51

    Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    CAS  Google Scholar 

  • Desiderio RA, Moore CC, Lantz C, Cowles TJ (1997) Multiple excitation fluorometer for in situ oceanographic applications. Appl Opt 36:1289–1296

    CAS  Google Scholar 

  • Dickinson DE, Bearman G, Tille S, Lansford R, Fraser SE (2001) Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques 31:1272–1276

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Blackwell Science, Malden

    Google Scholar 

  • Falkowski PG, Kolber Z, Fujita Y (1988) Effects of redox state on the dynamics of Photosystem II during steady-state photosynthesis in eucaryotic algae. Biochim Biophys Acta 933:432–443

    CAS  Google Scholar 

  • Fawley MW, Lee CM (1990) Pigment composition of the scaly green flagellate Mesostigma viridae (Micromonadophyceae) is similar to that of the siphonous green alga Bryopsis ­plumosa (Ulvophyceae). J Phycol 26:666–670

    CAS  Google Scholar 

  • Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erikson J, Bautista J (1997) On the photophysics and photochemical propoerties of carotenoids and their role as light-haresting pigments in photosynthesis. PureAppl Chem 69:2117–2124

    CAS  Google Scholar 

  • Gaevsky NA, Kolmakov VI, Anishchenko OV, Gorbaneva TB (2005) Using DCMU-fluorescence method for the identification of dominant phytoplankton groups. J Appl Phycol 17:483–494

    CAS  Google Scholar 

  • Gallegos CL, Neale PJ (2002) Partitioning spectral absorption in case 2 waters: discrimination of dissolved and particulate components. Appl Opt 41:4220–4233

    Google Scholar 

  • Gantt E (1996) Pigment protein complexes and the concept of the photosynthetic unit: chlorophyll complexes and phycobilisomes. Photosynth Res 48:47–53

    CAS  Google Scholar 

  • Gantt E, Lipschultz CA, Grabowski J, Zimmerman BK (1979) Phycobilisomes from blue-green and red algae. Plant Physiol 63:615–620

    CAS  Google Scholar 

  • Garcia-Mendoza E, Matthijs HCP, Schubert H, Mur LR (2002) Non-photochemical quenching of chlorophyll fluorescence in Chlorella fusca acclimated to constant and dynamic light conditions. Photosynth Res 74:303–315

    CAS  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser 148:187–200

    Google Scholar 

  • Geider RJ, MacIntyre HL, Graziano LM, McKay RML (1998a) Responses of the photosynthetic apparatus of Dunaliella teriolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur J Phycol 33:315–332

    Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998b) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients and temperature. Limnol Oceanogr 43:679–694

    CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Genty B, Harbinson J, Briatais J-M, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257

    CAS  Google Scholar 

  • Gerhardt V, Balode M (1998) Delayed fluorescence excitation spectroscopy: a method for automatic determination of phytoplankton composition of freshwaters and sediments (interstitial) and of algal composition of benthos. Limnologica 28:313–322

    CAS  Google Scholar 

  • Goericke R, Montoya JP (1998) Estimating the contribution of microalgal taxa to chlorophyll a in the field – variations of pigment ratios under nutrient- and light-limited growth. Mar Ecol Prog Ser 169:97–112

    Google Scholar 

  • Goericke R, Welschmeyer NA (1992a) Pigment turnover in the marine diatom Thalassiosira weissflogii. I. The 14CO2-labeling kinetics of chlorophyll a. J Phycol 28:498–507

    CAS  Google Scholar 

  • Goericke R, Welschmeyer NA (1992b) Pigment turnover in the marine diatom Thalassiosira weissflogii. II. The 14CO2-lableling kinetics of carotenoids. J Phycol 28:507–517

    CAS  Google Scholar 

  • Goss R, Lepetit B, Wilhelm C (2006) Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. J Plant Physiol 163:585–590

    CAS  Google Scholar 

  • Gregg WW, Carder KL (1990) A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol Oceanogr 35:1657–1675

    Google Scholar 

  • Gregor J, Geris R, Marsálek B, Hetesa J, Marvan P (2005)In situquantification of phytoplankton in reservoirs using a submersible spectrofluorometer. Hydrobiologia 548:141–151

    Google Scholar 

  • Grossman AR, Schefer MR, Chiang GG, Collier JL (1993) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, The Netherlands, pp 641–675

    Google Scholar 

  • Hammer A, Schumann R, Schubert H (2002) Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance. Aquat Microb Ecol 29:287–296

    Google Scholar 

  • Haxo FT, Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33:389–422

    CAS  Google Scholar 

  • Henriksen P, Riemann B, Kaas H, Sorensen H, Sorensen H (2002) Effects of nutrient-limitation and irradiance on marine phytoplankton pigments. J Plankt Res 24:835–858

    CAS  Google Scholar 

  • Hilton J, Rigg E, Jaworski G (1988) In vivo algal fluorescence, spectral change due to light intensity changes and the automatic characterization of algae. Freshw Biol 21:375–382

    Google Scholar 

  • Hilton J, Rigg E, Jaworski G (1989) Algal identification using in vivo fluorescence spectra. J Plankt Res 11:65–74

    Google Scholar 

  • Hoef-Emden K (2008) Molecular phylogeny of phycocyanin-containing cryptophytes: Evolution of biliproteins and geographical distribution. J Phycol 44:985–993

    Google Scholar 

  • Hooks CE, Bidigare RR, Keller MD, Guillard RRL (1988) Coccoid eukaryotic ultraplankters with four different HPLC pigment signatures. J Phycol 24:571–580

    CAS  Google Scholar 

  • Itoh S, Sugiura K (2004) Fluorescence of photosystem I. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 231–250

    Google Scholar 

  • Jackson DA, Somers KM (1991) The spectre of ‘spurious’ correlations. Oecologia 86:147–151

    Google Scholar 

  • Jakob T, Schreiber U, Kirschesch V, Langner U, Wilhelm C (2005) Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynth Res 83:343–361

    CAS  Google Scholar 

  • Jeffrey SW, Vesk M (1997) Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, pp 37–84

    Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Rome

    Google Scholar 

  • Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251

    CAS  Google Scholar 

  • Johnsen G, Samset O, Granskog L, Sakshaug E (1994)In-vivoabsorption characteristics in 10 classes of bloom-forming phytoplankton – taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Mar Ecol Prog.Ser 105:149–157

    Google Scholar 

  • Johnsen G, Prézelin BB, Jovine RVM (1997) Fluorescence excitation spectra and light utilization in two red tide dinoflagellates. Limnol Oceanogr 42:1166–1177

    CAS  Google Scholar 

  • Johnson Z, Barber RT (2003) The low-light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield. Photosynth Res 75:85–95

    CAS  Google Scholar 

  • Jovine RVM, Johnsen G, Prézelin BB (1995) Isolation of membrane bound light-haryesting-complexes from the dinoflagellates Heterocapsa pygmaea and Prorocentrum minimum. Photosynth Res 44:127–138

    CAS  Google Scholar 

  • Kana TM, Glibert PM (1987) Effect of irradiances up to 2000 µE m−2 s−1 on marine Synechococcus WH7803 – I. Growth, pigmentation, and cell composition. Deep Sea Res 34:479–495

    CAS  Google Scholar 

  • Kana TM, Glibert PM, Goericke R, Welschmeyer NA (1988) Zeaxanthin and β-carotene in Synechococcus WH7803 respond differently to irradiance. Limnol Oceanogr 33:1623–1627

    CAS  Google Scholar 

  • Kiefer DA (1973a) Chlorophyll a fluorescence on marine centric diatoms: responses of chloroplasts to light and nutrient stress. Mar Biol 23:39–46

    Google Scholar 

  • Kiefer DA (1973b) Fluorescence properties of natural phytoplankton populations. Mar Biol 22:263–269

    Google Scholar 

  • Kieleck C, Bousquet B, Le Brun G, Cariou J, Lotrian J (2001) Laser induced fluorescence imaging: application to groups of macroalgae identification. J Phys D: Appl Phys 34:2561–2571

    CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Koblizek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth Res 68:141–152

    CAS  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    CAS  Google Scholar 

  • Kolbowski J, Schreiber U (1995) Computer-controlled phytoplankton analyzer based on 4-wavelengths PAM chlorophyll fluorometer. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol V. Kluwer, The Netherlands, pp 825–828

    Google Scholar 

  • Kopf U, Heinze J (1984) 2, 7-bis(diehylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm. Anal Chem 56:1931–1935

    CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Google Scholar 

  • Kruse O (2001) Light-induced short-term adaptation mechanisms under redox control in the PS II-LHCII supercomplex: LHC II state transitions and PSII repair cycle. Naturwissenschaften 88:284–292

    CAS  Google Scholar 

  • Kruskopf M, Flynn KJ (2006) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525–536

    CAS  Google Scholar 

  • Laney SR (2003) Assessing the error in photosynthetic properties determined with Fast Repetition Rate fluorometry. Limnol Oceanogr 48:2234–2242

    Google Scholar 

  • Laney SR, Letelier R (2008) Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry. Limnol Oceanogr Methods 6:40–50

    CAS  Google Scholar 

  • Latasa M (1995) Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Sci Mar 59:25–37

    Google Scholar 

  • Latasa M, Berdalet E (1994) Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J Plankt Res 16:83–94

    Google Scholar 

  • Lavaud J, Strzepek RF, Kroth PG (2007) Photoproprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr 52:1188–1194

    CAS  Google Scholar 

  • Laws EA, Bannister TT (1980) Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the sea. Limnol Oceanogr 25:457–473

    CAS  Google Scholar 

  • Lewitus AJ, Caron DA (1990) Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation, chemical composition, and volume of Pyrenomonas salina (Cryptophyceae). Mar Ecol Prog Ser 61:171–181

    CAS  Google Scholar 

  • Loftus ME, Seliger HH (1975) Some limitations of thein vivofluorescence technique. Chesapeake Science 16:79–92

    CAS  Google Scholar 

  • Lohrenz SE (2000) A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique. J Plankt Res 22:639–657

    Google Scholar 

  • Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Res 13:223–227

    Google Scholar 

  • Lutz VA, Sathyendranath S, Head EJH, Li WKW (2001) Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton. J Plankt Res23:555–569

    CAS  Google Scholar 

  • MacColl R, Guard-Friar D (1983) Phycocyanin 645. The chromophore assay of Phycocyanin 645 from the cryptomonad protozoa Chroomonas species. J Biol Chem 258:14327–14329

    CAS  Google Scholar 

  • MacIntyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen RA (ed) Algal Cultureing Techniques. Amsterdam, Elsevier, pp 287–326

    Google Scholar 

  • MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12–17

    CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Google Scholar 

  • MacIntyre HL, Lomas MW, Cornwell JC, Suggett DJ, Koch EW, Gobler CJ, Kana TM (2004) Mediation of benthic-pelagic coupling by microphytobenthos: An energy- and material-based model for initiation of blooms of Aureococcus anophagefferens. Harmful Algae 3:403–438

    CAS  Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    CAS  Google Scholar 

  • Mazel CH (1995) Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar Ecol Prog Ser 120:185–191

    Google Scholar 

  • McLeod GC (1958) Delayed light action spectra of several algae in visible and ultraviolet light. J Gen Physiol 42:243–250

    CAS  Google Scholar 

  • Millie DF, Om S, Kirkpatrick GJ, Johnsen G, Tester PA, Vinyard BT (1997) Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnol Oceanogr 42:1240–1251

    CAS  Google Scholar 

  • Millie DF, Schofield OME, Kirkpatrick GJ, Johnsen G, Evens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur J Phycol 37:313–322

    Google Scholar 

  • Mimuro M (2005) Visualization of excitation energy transfer processes in plants and algae. In: Govindjee, Beatty JT, Gest H, Allen JF (eds) Discoveries in photosynthesis. Springer, Dordrecht, pp 171–176

    Google Scholar 

  • Moberg L, Karlber B, Sørensen K, Källqvist T (2002) Assessment of phytoplankton class abundance using absorption spectra and chemometrics. Talanta 56:153–160

    CAS  Google Scholar 

  • Moisan TA, Mitchell BG (1999) Photophysiological acclimation of Phaeocystis antarctica Karsten under light limitation. Limnol Oceanogr 44:247–258

    Google Scholar 

  • Moore LR, Goericke R, Chisholm SW (1995) “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116:259–275

    Google Scholar 

  • Morel A (1991) Optics of marine particles and marine optics. In: Demers S (ed.) Particle Analysis in Oceanography. NATO ANSI Series G 27:141–188

    Google Scholar 

  • Mueller JL (2003) Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV, Err. 1. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Fargion GS, Mueller JL. Goddard Space Flight Space Center, Greenbelt, Maryland, National Aeronautical and Space Administration. NASA/TM—2003-211621/Rev4-Vol.IV (ERRATUM 1)

    Google Scholar 

  • Murphy A, Cowles T (1997) Effects of darkness on multi-­excitation in vivo fluorescence and survival in a marine ­diatom. Limnol Oceanogr 42:1444–1453

    CAS  Google Scholar 

  • Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184

    CAS  Google Scholar 

  • Neori A, Vernet M, Holm-Hansen O, Haxo FT (1988) Comparison of chlorophyll far-red fluorescence excitation spectra with photosynthetic oxygen action spectra for photosystem II in algae. Mar Ecol Prog Ser 44:297–302

    CAS  Google Scholar 

  • Olaizola M, Yamamoto HY (1994) Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol 30:606–612

    CAS  Google Scholar 

  • Oldham PB, Zillioux EJ, Warner IM (1985) Spectral “fingerprinting” of phytoplankton populations by two-dimensional fluorescence and Fourier-transform-based pattern recognition. J Plankton Res 43:893–906

    Google Scholar 

  • Owens T (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum. II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    CAS  Google Scholar 

  • Parésys G, Rigart C, Rousseau B, Wong AWM, Fan F, Barbier J-P, Lavaud J (2005) Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria. Wat Res 39:911–921

    Google Scholar 

  • Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723

    CAS  Google Scholar 

  • Poryvkina L, Babichenko S, Kaitala S, Kurosa H, Shalapyonok A (1994) Spectral fluorescent signatures in the characterization of phytoplankton community composition. J Plankton Res 16:1315–1327

    Google Scholar 

  • Poryvkina L, Babichenko S, Leeben A (2000) Analysis of phytoplankton pigments by excitation spectra of fluorescence. Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG

    Google Scholar 

  • Raateoja M, Mitchell BG, Wang H, Olivo E (2009) Effect of water column light gradient on phytoplankton fluorescence transients. Mar Ecol Prog Ser 376:85–101

    Google Scholar 

  • Ras J, Claustre H, Uitz J (2008) Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5:353–369

    CAS  Google Scholar 

  • Richardson TL, Lawrenz E, Pinckney JL, Guajardo RC, Walker EA, Paerl HW, MacIntyre HL (2010) Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser. Water Research (in press)

    CAS  Google Scholar 

  • Richardson TL, Pinckney JL (2004) Monitoring of the toxic dinoflagellate Karenia brevis using gyroxanthin-based detection methods. J Appl Phycol 16:315–328

    CAS  Google Scholar 

  • Roesler CS, Perry MJ (1995) In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J Geophys Res 100(C7):13279–13294

    Google Scholar 

  • Ross ON, Moore CM, Suggett DJ, MacIntyre HL, Geider RJ (2008) A model of photosynthesis and photo-protection based on reaction center damage and repair. Limnol Oceanogr 53:1835–1852

    CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton H, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:475–478

    Google Scholar 

  • Sahay A, Jajoo A, Singh P, Bharti S (2006) Nitrite regulates distribution of excitation energy between the two photosystems by causing state transition. Plant Physiol Biochem 44:7–12

    CAS  Google Scholar 

  • Sakshaug E, Demers S, Yentsch CS (1987) Thalassiosira ­oceanica and Thalassiosira pseudonana: two different photoadaptational responses. Mar Ecol Prog Ser 41:275–282

    Google Scholar 

  • Schimanski J, Beutler M, Moldaenke C, Hansen U-P (2006) A model for correcting the fluorescence signal from a free-falling depth profiler. Water Res 40:1616–1626

    CAS  Google Scholar 

  • Schubert H, Forster RM, Sagert S (1995) In situ measurement of state transition in cyanobacterial blooms: kinetics and extent of the state change in relation to underwater light and vertical mixing. Mar Ecol Prog Ser 128:99–108

    Google Scholar 

  • Sciandra A, Lazzara L, Claustre H, Babin M (2000) Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stresses. Mar Ecol Prog Ser 201:107–120

    CAS  Google Scholar 

  • See JH, Richardson TL, Pinckney JL, Shen RJ, Guinasso NL (2005) Combining new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico. J Phycol 41:305–310

    Google Scholar 

  • Seppälä J, Balode M (1998) The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia 363:207–217

    Google Scholar 

  • Seppälä J, Olli K (2008) Multivariate analysis of phytoplankton spectral in vivo fluorescence: estimation of phytoplankton biomass during a mesocosm study in the Baltic Sea. Mar Ecol Prog Ser 370:69–85

    Google Scholar 

  • Seppälä J, Ylöstalo P, Kaitala S, Hällfors S, Raateoja M, Maunula P (2007) Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Est Coast Shelf Sci 73:489–500

    Google Scholar 

  • Serôdio J (2004) Analysis of variable chlorophyll fluorescence in microphytobenthos assemblages: implications of the use of depth-integrated measurements. Mar Ecol Prog Ser 36:137–152

    Google Scholar 

  • Six C, Thomas JC, Brahamsha B, Lemoine Y, Partensky F (2004) Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat Microb Ecol 35:17–29

    Google Scholar 

  • Sosik HM (1988) Analysis of chlorophyll fluorescence in marine phytoplankton: interpretation of flow cytometric signals. Cambridge, MA, Massachussetts Institute of Technology: 88

    Google Scholar 

  • Sosik HM, Mitchell BG (1991) Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta. Limnol Oceanogr 36:910–921

    CAS  Google Scholar 

  • Sosik HM, Mitchell BG (1994) Effects of temperature on growth, light absorption, and quantum yield in Dunaliella tertiolecta (Chlorophyceae). J Phycol 30:833–840

    Google Scholar 

  • Spear-Bernstein L, Miller KR (1989) Unique location of the phycobiliprotein light-harvesting pigment in the Cryptophyceae. J Phycol 25:412–419

    CAS  Google Scholar 

  • Staehr PA, Cullen JJ (2003) Detection of Karenia mikimotoi by spectral absorption signatures. J Plankton Res 25:1237–1249

    CAS  Google Scholar 

  • Staehr PA, Henriksen P, Markager S (2002) Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Mar Ecol Prog Ser 238:47–59

    CAS  Google Scholar 

  • Stolte W, Kraay GW, Noordeloos AAM, Rieman R (2000) Genetic and physiological variation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological marker. J Phycol 36:529–539

    CAS  Google Scholar 

  • Strickland JDH (1968) Continuous measurement ofin vivochlorophyll: A precautionary note. Deep Sea Res 15:225–227

    Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture ­differs in coastal and oceanic diatoms. Nature 431:689–692

    CAS  Google Scholar 

  • Suggett DJ, MacIntyre HL, Geider RJ (2004) Biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Methods 2:316–332

    Google Scholar 

  • Suggett DJ, MacIntyre HL, Kana TM, Geider RJ (2009) Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton. Aquat Microb Ecol 56:147–162

    Google Scholar 

  • Sukenik A, Bennett J, Falkowski PG (1987) Light-saturated photosynthesis – limitation by electron transport or carbon fixation? Biochim Biophys Acta 891:205–215

    CAS  Google Scholar 

  • Sukenik A, Bennett J, Mortain-Bertrand A, Falkowski PG (1990) Adaptation of the photosynthetic apparatus to irradiance in Dunaliella tertiolecta. Plant Physiol 92:891–898

    CAS  Google Scholar 

  • Topinka JA, Korjeff Bellows W, Yentsch CS (1990) Characterization of marine macroalgae by fluorescence signatures. Int J Rem Sens 11:2329–2335

    Google Scholar 

  • Uitz J, HuotY BF, Babin M (2008) Relating phytoplankton photophysiological properties to community structure on large scales. Limnol Oceanogr 53:614–630

    Google Scholar 

  • van de Hulst HC (1957) Scattering by small particles. Wiley, New York, 470 p

    Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr 910:1–49

    Google Scholar 

  • Verity PG (1981) Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus Cleve. I. Photosynthesis and cellular composition. J Exp Mar Biol Ecol 55:79–91

    CAS  Google Scholar 

  • Vincent WF (1979) Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities. I. Redistribution of excitation energy between photosystems I and II. J Phycol 15:429–434

    CAS  Google Scholar 

  • Vincent WF (1980) Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities. II. Changes in photochemical capacity as measured by DCMU-induced chlorophyll fluorescence. J Phycol 16:568–577

    CAS  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjørnland T, Repeta DJ, Welschmeyer NA (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196

    CAS  Google Scholar 

  • Yamamoto HY, Bassi R (1996) Carotenoids: localization and function. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer, The Netherlands, pp 539–563

    Google Scholar 

  • Yentsch CS, Phinney DA (1985) Spectral fluorescence – an ataxonomic tool for studying the structure of phytoplankton populations. J Plankt Res 7:617–632

    CAS  Google Scholar 

  • Yentsch CS, Yentsch CM (1979) Fluorescence spectral signatures – characterization of phytoplankton populations by the use of excitation and emission-spectra. J Mar Res 37:471–483

    CAS  Google Scholar 

  • Zhang QQ, Lei SH, Wang XL, Zhua CJ (2006) Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra. Spectrochim Acta Part A 63:361–369

    Google Scholar 

  • Zhu M, Yang X, Cullen JJ (1992) The study of fluorescence characteristics and biochemical composition of a marine diatom Thalassiosira pseudonana 3H in light and dark cycles. Acta Oceanol Sin 12:457–464

    Google Scholar 

Download references

Acknowledgements

We thank Geir Johnsen and an anonymous reviewer for comments that improved this work. We thank Adrienne Stutes, Andy Canion, Alison Rellinger, Preston Kendrick and Emily Goldman for assistance in field sampling and lab work. HLM was supported by the US National Atmospheric and Oceanographic Administration’s Cooperative Institute for Coastal and Estuarine Environmental Technology (Grant number NA06NOS4190167). HLM acknowledges support for supplementary fieldwork from the US EPA (Grant numbers X-93190401 and R-83065101-1-6) and US Department of Commerce (Grant number NA17FZ2602-A3-08), administered through the Alabama Center for Estuarine Studies and the Alabama Oyster Reef Restoration Program. TLR acknowledges support from the US National Science Foundation (Grant numbers OCE06234001 and CBET0606940) and the South Carolina Sea Grant Consortium (Grant number P/M-2J-V410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh L. MacIntyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

MacIntyre, H.L., Lawrenz, E., Richardson, T.L. (2010). Taxonomic Discrimination of Phytoplankton by Spectral Fluorescence. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_7

Download citation

Publish with us

Policies and ethics