Skip to main content

Estimating Aquatic Productivity from Active Fluorescence Measurements

  • Chapter
  • First Online:

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

One of the major uses of active chlorophyll fluorescence in aquatic studies has been to examine primary productivity free from constraints associated with ‘conventional’ gas exchange-based measurements. Fluorescence can be measured directly in situ and without the need to incubate discrete samples that have been removed from natural inherent environmental variability (Kolber and Falkowski 1993). Additionally, the high rate of data collection afforded by fluorometry allows investigations of the coupling of productivity to physical forcing and hence the examination of transient phenomena that can have a disproportionate impact on the functional response of aquatic systems (Kolber et al. 1990; Falkowski et al. 1991; Moore et al. 2003). In spite of these advantages, fluorescence-based productivity applications have, to some extent, taken a considerable time to become firmly established within conventional aquatic sampling disciplines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Babin M, Morel A, Claustre H, Bricaud C, Kolber Z, Falkowski PG (1996) Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep Sea Res I 43:1241–1272

    CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans R Soc Lond B 355: 1433–1446

    CAS  Google Scholar 

  • Bailey S, Melis A, Mackey KRM, Cardol P, Finazi G, van Djiken G, Berg GM, Arrigo K, Shrager J, Grossman A (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta 1777:269–276

    CAS  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Env 30:1107–1125

    CAS  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC and Govindjee (eds) Chlorophylla fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 65–82

    Google Scholar 

  • Barlow RG, Alberte RS (1985) Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus sp. Mar Biol 86:63–74

    CAS  Google Scholar 

  • Beer S, Axelsson L (2004) Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. Eur J Phycol 39:1–7

    Google Scholar 

  • Beer S, Björk M (2000) Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulate (PAM) fluorometry. Aquat Bot 66:69–76

    CAS  Google Scholar 

  • Beer S, Larsson C, Poryan O, Axelsson L (2000) Photosynthetic rates of Ulva (Chlorophyta) measured by pulse amplitude modulated fluorometry. Eur J Phycol 35:69–74

    Google Scholar 

  • Beer S, Weill A, Veste M, Susell L, Eshell A (1998) Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar Ecol Prog Ser 174:293–300

    CAS  Google Scholar 

  • Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integ­rated growth environment. Phil Trans R Soc Lond B 363:2687–2703

    CAS  Google Scholar 

  • Behrenfeld MJ, Prášil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25

    CAS  Google Scholar 

  • Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, Shea DM (2006) Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442:1025–1028

    CAS  Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–96

    CAS  Google Scholar 

  • Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In vivo absorption properties of algal pigments. SPIE 1302 (Ocean Optics X):289–302

    Google Scholar 

  • Boichenko VA (1998) Action spectra and functional antenna sizes of Photosystems I and II in relation to the thylakoid membrane organization and pigment composition. Photosynth Res 58:163–174

    CAS  Google Scholar 

  • Boyd PW, Aiken J, Kolber ZS (1997) Comparison of radiocarbon and fluorescence based (pump and probe) measurements of phytoplankton photosynthetic characteristics in the Northeast Atlantic Ocean. Mar Ecol Prog Ser 149:215–226

    Google Scholar 

  • Cabello-Pasini A, Figueroa F (2005) Effect of nitrate concentration on the relationship between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta). J Phycol 41:1169–1177

    CAS  Google Scholar 

  • Cardol P, Bailleul B, Rappaport F, Derelle E, Béal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H, Finazzi G (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc Nat Acad Sci USA 105:7881–7886

    CAS  Google Scholar 

  • Corno G, Letelier RM, Abbott MR, Karl DA (2005) Assessing primary production variability in the north Pacific subtropical gyre: a comparison of fast repletion rate fluorometry and 14C measurements. J Phycol 42:51–60

    Google Scholar 

  • Corno G, Letelier RM, Abbott MR, Karl DA (2008) Temporal and vertical variability in photosynthesis in the North Pacific Subtropical Gyre. Limnol Oceanogr 53:1252–1265

    Google Scholar 

  • Cullen JJ, Davis RF (2003) The blank can make a big diffe­rence in oceanographic measurements. Limnol Oceanogr Bull 12:29–35

    Google Scholar 

  • Debes H, Gaard E, Hansen B (2008) Primary production on the Faroe shelf: Temporal variability and environmental influences. J Mar Sys 74:686–697

    Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilisation by phytoplankton. Plant Cell Physiol 27:1335–1349

    CAS  Google Scholar 

  • Enríquez S, Rodríguez-Román A (2006) Effect of water flow on the photosynthesis of three marine macrophytes from a fringing-reef lagoon. Mar Ecol Prog Ser 323:119–132

    Google Scholar 

  • Eriksen NT, Lewitus AJ (1999) Cyanide-resistant respiration in diverse marine phytoplankton. Evidence for the widespread occurrence of the alternative oxidase. Aquatic Microb Ecol 17:145–152

    Google Scholar 

  • Estévez-Blanco P, Cermeño P, Espiñeira M, Fernández E (2006) Phytoplankton photosynthetic efficiency and primary production rates estimated from fast repetition rate fluorometry at coastal embayments affected by upwelling (Rías Baixas, NW of Spain). J Plankton Res 28:1153–1165

    Google Scholar 

  • Falkowski PG, Owens TG, Ley AC, Mauzerall DC (1981) Effect of growht irradiance levels on the ratio of reaciotn centres in two species of marine phytoplankton. Plant Physiol 68:669–673

    Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd ed. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Falkowski PG, Wyman K, Ley AC, Mauzerall DC (1986) Relationship of steady state photosynthesis to fluorescence in eukaryotic algae. Biochim Biophys Acta 849:183–192

    CAS  Google Scholar 

  • Falkowksi PG, Ziemann D, Kolber ZS, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55–58

    Google Scholar 

  • Feikema WA, Marosvölgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1757:829–834

    CAS  Google Scholar 

  • Fietz S, Nicklisch A (2002) Acclimaiton of the diatom Stephanodiscus neostraea and the cyanobacterium Planktothrix agardhii to simulated and natural light fluctuations. Photosynth Res 72:95–106

    CAS  Google Scholar 

  • Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275

    CAS  Google Scholar 

  • Fisher T, Minnaard M, Dubinsky Z (1996) Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyta): a kinetic study. J Plankton Res 18:1797–1818

    Google Scholar 

  • Fisher T, Shurtz-Swirski R, Gepstein S, Dubinsky Z (1989) Changes in the levels of Ribulose-1, 5-biphosphate Carboxylase/Oxygenase (Rubisco) in Tetraedron minimum (Chlorophyta) during light and shade adaptation. Plant Cell Phys 30:221–228

    CAS  Google Scholar 

  • Flameling IA, Kromkamp JC (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnol Oceanogr 43:284–297

    CAS  Google Scholar 

  • Franklin LA, Badger MR (2001) A comparison of photosynthetic electron transfer rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry. J Phycol 37:756–767

    CAS  Google Scholar 

  • Fujiki T, Suzue T, Kimono H, Saino T (2007) Photosynthetic electron transport in Dunaliella tertiolecta (Chlorophyceae) measured by fast repetition rate fluorometry: relation to carbon assimilation. J Plankton Res 29:199–208

    CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Geider RJ, Osborne BA (1992) Algal photosynthesis: the measurements of algal gas exchange. Chapman & HalL, New York

    Google Scholar 

  • Gilbert M, Domin A, Becker A, Wilhelm C (2000a) Estimation of primary productivity by chlorophylla in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38:111–126

    CAS  Google Scholar 

  • Gilbert M, Wilhelm C, Richter M (2000b) Biooptical modelling of oxygen evolution using in vivo fluorescence: Comparison of measured and calculated photosynthesis-irradiance (P-I) curves in four representative phytoplankton species. J Plant Physiol 157:307–314

    CAS  Google Scholar 

  • Glud RN, Rysgaard S, Kühl M (2002) A laboratory study on O2 dynamics and photosynthesis in ice algal communities: quantification by microsensors, O2 exchange rates, 14C incubations and a PAM fluorometer. Aquat Microb Ecol 27:301–311

    Google Scholar 

  • Gorbunov MY, Kolber ZS, Lesser MP, Falkowski PG (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85

    CAS  Google Scholar 

  • Grande KD, Bender ML, Irwin B, Platt T (1991) A comparison of net and gross rates of oxygen production as a function of light intensity in some natural plankton populations and in a Synechococcus culture. J Plankton Res 13:1–16

    Google Scholar 

  • Hancke K, Hancke TB, Johnsen G, Sakshaug E (2008a) Rate of O2 production derived from pulse amplitude modulated fluorescence: testing three biooptical approaches against measured O2 production rate. J Phycol 44:803–813

    CAS  Google Scholar 

  • Hancke K, Hancke TB, Olsen LM, Johnsen G, Glud RN (2008b) Temperature effects on microalgal photosynthesis-light responses measured by O2 production, pulse amplitude modulated fluorescence and 14C assimilation. J Phycol 44:501–514

    CAS  Google Scholar 

  • Hartig P, Wolfstein K, Lippemeier S, Colijn F (1998) Photosynthetic activity of natural microphytobenthos populations measured by fluorescence (PAM) and 14C-tracer methods: a comparison. Mar Ecol Prog Ser 166:53–62

    Google Scholar 

  • Henley WJ, Dunton KH (1997) Effects of nitrogen supply and continuous darkness on growth and photosynthesis of the arctic kelp Laminaria solidungula. Limnol Oceanogr 42:209–216

    CAS  Google Scholar 

  • Hennige SJ, Smith DJ, Perkins R, Consalvey M, Paterson DM, Suggett DJ (2008) Photoacclimation, growth and distribution of massive coral species in clear and turbid waters. Mar Ecol Prog Ser 369:77–88

    Google Scholar 

  • Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Google Scholar 

  • Herlory O, Richard P, Blanchard EF (2007) Methodology of light response curves: application of chlorophyll fluorescence to microphytobenthic biofilms. Mar Biol 153:91–101

    CAS  Google Scholar 

  • Herzig R, Dubinsky Z (1992) Photoacclimation, photosynthesis and growth in phytoplankton. Isr J Bot 41:199–211

    Google Scholar 

  • Herzig R, Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae) 1. Photosynthetic energy conversion and growth efficiencies. J Phycol 25:462–471

    CAS  Google Scholar 

  • Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total photosynthetic electron flow to CO2 or NO -3 /NO -2 under transient conditions. Plant Physiol 91:331–337

    CAS  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175

    Google Scholar 

  • Johnsen G, Prezelin BB, Jovine RVM (1997) Fluorescence excitation spectra and light utilization in two red tide dinoflagellates. Limnol Oceanogr 42:1166–77

    CAS  Google Scholar 

  • Johnsen G, Sakshaug E (1993) Bio-optical characteristics and photoadaptive responses in the toxic and bloom forming dinoflagellates Gyrodinium aureolum, Gymnodinium gala­theanum and two strains of Prorocentrum minimum. J Phycol 29:627–642

    CAS  Google Scholar 

  • Johnsen G, Sakshaug E (2007) Bio-optical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251

    CAS  Google Scholar 

  • Juneau P, Harrison PJ (2005) Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochem Photobiol 81:649–653

    CAS  Google Scholar 

  • Kana TM (1990) Light-dependent oxygen cycling measured by an oxygen-18 isotope dilution technique. Mar Ecol Prog Ser 64:293–300

    CAS  Google Scholar 

  • Kana TM (1993) Rapid oxygen cycling in Trichodesmium thiebautii. Limnol Oceanogr 38:18–24

    CAS  Google Scholar 

  • Koblížek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency.A repetitive flash fluorescence induction study. Photosynth Res 68:141–152

    Google Scholar 

  • Kolber ZS, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blakenship RE, VanDover CL, Vetriani C, Koblížek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    CAS  Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    CAS  Google Scholar 

  • Kramer DM, DiMarco G, Loreto F (1995) Contribution of plastoquinone quenching to saturation pulse-induced rise of chlorophyll fluorescence in leaves. In: Mathis P (ed) Photosynthesis from light to the biosphere, vol 1. Kluwer, Dordrecht, pp 147–150

    Google Scholar 

  • Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112

    Google Scholar 

  • Kromkamp JC, Dijkman NA, Peene J, Simis SGH, Gons HJ (2008) Estimating phytoplankton primary production in Lake IJsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. Eur J Phycol 43:327–344

    CAS  Google Scholar 

  • Lavergne J, Trissl HW (1995) Theory of fluorescence induction in Photosystem II: derivation of analytical expressions in a model including Exciton-Radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492

    CAS  Google Scholar 

  • Laws EA (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Res 38:143–167

    CAS  Google Scholar 

  • Levy O, Achituvi Y, Yacobi YZ, Dubinsky Z, Stambler N (2006) Diel ‘tuning’ of coral metabolism: physiological responses to light cues. J Exp Biol 209:273–283

    CAS  Google Scholar 

  • Levy O, Dubinsky Z, Schneider K, Achituvi Y, Zakai D, Gorbunov MY (2004) Diurnal hysteresis in coral photosynthesis. Mar Ecol Prog Ser 268:105–117

    Google Scholar 

  • Lewitus AJ, Kana TM (1995) Light respiration in six estuarine phytoplankton species: contrasts under photoautotrophic and mixotrophic growth conditions. J Phycol 31:754–791

    Google Scholar 

  • Longstaff B, Kildea T, Runcie JW, Cheshire A, Dennison WC, Hurd C, Kana T, Raven JA, Larkum AWD (2002) An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynth Res 74:281–291

    CAS  Google Scholar 

  • Lutz VA, Sathyendranath S, Head EJH, Li WKW (2001) Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton. J Plankton Res 23:555–569

    CAS  Google Scholar 

  • MacIntyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, New York, pp 287–326

    Google Scholar 

  • MacIntyre HL, Geider RJ, McKay RM (1996) Photosynthesis and regulation of Rubisco activity in net phytoplankton from Delaware Bay. J Phycol 32:718–731

    CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Google Scholar 

  • MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12–17

    CAS  Google Scholar 

  • MacKenzie TDB, Burns RA, Campbell DA (2004) Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongates. Plant Physiol 136:3301–3312

    CAS  Google Scholar 

  • Mackey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900–913

    CAS  Google Scholar 

  • Major KM, Dunton KH (2002) Variation in light-harvesting characteristics of the seagrass Thalassia testudinum: evidence for photoacclimation. J Exp Mar Biol Ecol 275:173–189

    CAS  Google Scholar 

  • Malinsky-Rushansky N, Berman T, Berner T, Yacobi YZ, Dubinsky Z (2002) Physiological characteristics of phytoplankton isolated from Lake Kinneret: responses to temperature and light. J Plankton Res 24:1173–1183

    CAS  Google Scholar 

  • Masojídek J, Grobbelaar JU, Pechar L, Koblížek M (2001) Photosystem II electron transport rates and oxygen production in natural waterblooms of freshwater cyanobacteria during a diel cycle. J Plankton Res 23:57–66

    Google Scholar 

  • Mauzerall D, Greenbaum NL (1989) The absolute size of a photosynthetic unit. Biochim Biophys Acta 974:119–140

    CAS  Google Scholar 

  • McDonald AE, Vanlerberghet GC (2006) Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase. Comp Biochem Physiol D 1:357–364

    Google Scholar 

  • Morris EP, Kromkamp JC (2003) Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium). Eur J Phycol 38:133–142

    Google Scholar 

  • Morris EP, Forster RM, Peene J, Kromkamp JC (2008) Coupling between Photosystem II electron transport and carbon fixation in microphytobenthos. Aquat Microb Ecol 50:301–311

    Google Scholar 

  • Moore CM, Lucas MI, Sanders R, Davidson R (2005) Basin-scale variability of phytoplankton bio-optical characteristics in relation to bloom state and community structure in the Northeast Atlantic. Deep Sea Res I 53:104–409

    Google Scholar 

  • Moore CM, Suggett DJ, Hickman AE, Kim Y-N, Tweddle JF, Sharples J, Geider RJ, Holligan PM (2006) Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol Oceanogr 51:936–949

    Google Scholar 

  • Moore CM, Suggett DJ, Holligan PM, Sharples J, Abraham ER, Lucas MI, Rippeth TP, Fisher NR, Simpson JH, Hydes DJ (2003) Physical controls on phytoplankton physiology and production at a shelf sea front: An FRRF-based field study. Mar Ecol Prog Ser 259:29–45

    CAS  Google Scholar 

  • Myers J, Graham J-R (1971) The photosynthetic unit in Chlorella measured by short repetitive flahses. Plant Physiol 48:282–286

    CAS  Google Scholar 

  • Neori A, Vernet M, Holm-Hansen O, Haxo FT (1988) Comparison of chlorophyll far-red and red fluorescence excitation spectra with photosynthetic oxygen action spectra for photosystem II in algae. Mar Ecol Prog Ser 44:297–302

    CAS  Google Scholar 

  • Pemberton KL, Clarke R, Joint I (2006) Quantifying uncertainties associated with the measurement of primary production. Mar Ecol Prog Ser 322:51–59

    CAS  Google Scholar 

  • Perkins RG, Mouget J-L, Lefebvre S, Lavaud J (2006) Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Mar Biol 149:703–712

    Google Scholar 

  • Platt T, Jassby AD (1976) Relationship between photosynthesis and light for natural assemblages of costal marine phytoplankton. J Phycol 12:421–430

    Google Scholar 

  • Prášil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410

    Google Scholar 

  • Prášil O, Suggett DJ, Cullen JJ, Babin M, Govindjee (2008) Aquafluo 2007: chlorophyll fluorescence in aquatic sciences, an international conference held in Nove Hrady. Photosynth Res 95:111–115

    Google Scholar 

  • Quigg A, Kevekordes K, Raven JA, Beardall J (2006) Limitations on microalgal growth at very low photon fluence rates: the role of energy slippage. Photosynth Res 88:299–310

    CAS  Google Scholar 

  • Raateoja M, Seppälä J, Kuosa H (2004) Bio-optical modelling of primary production in the SW Finnish coastal zone, Baltic Sea: fast repetition rate fluorometry in Case 2 waters. Mar Ecol Prog Ser 267:9–26

    Google Scholar 

  • Ralph PJ, Gademan R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    CAS  Google Scholar 

  • Robinson C, Tilstone GH, Rees AP, Smythe TJ, Fishwick JR, Tarran GA, Luz B, Barkan E, David E (2009) Comparison of in vitro and in situ plankton production determinations. Aquat Microb Ecol 54:13–34

    Google Scholar 

  • Runcie JW, Riddle MJ (2006) Photosynthesis of marine macroalgae in ice covered and ice free environments in East Antarctica. Eur J Phycol 41:223–234

    CAS  Google Scholar 

  • Sarma VVSS, Abe O, Hashimoto S, Inhuma A, Saino T (2005) Seasonal variations in triple oxygen isotopes and gross ­oxygen production in Sagami Bay, central Japan. Limnol Oceanogr 50:544–552

    CAS  Google Scholar 

  • Sathyendranath S, Longhurst A, Caverhill CM, Platt T (1995) Regionally and seasonally differentiated primary production in the North Atlantic. Deep Sea Res 42:1773–1802

    Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of Photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    CAS  Google Scholar 

  • Schreiber U, Neubauer C, Schuwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: A highly sensitive new tool in basic and applied photosynthesis research. Photosynth Res 36:65–72

    CAS  Google Scholar 

  • Serôdio J, Vieira S, Cruz S, Coelho H (2006) Microphytobenthos vertical migratory photoresponse as characterised by light-response curves. Photosynth Res 90:29–43

    Google Scholar 

  • Silva J, Santos R (2004) Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii? J Exp Mar Biol Ecol 307:207–216

    CAS  Google Scholar 

  • Smythe TJ, Pemberton KL, Aiken J, Geider RJ (2004) A methodology to determine primary production and phytoplankton photosynthetic parameters from Fast Repetition Rate Fluorometry. Plankton Res 24:1337–1350

    Google Scholar 

  • Suggett DJ, Kraay G, Holligan P, Davey M, Aiken J, Geider RJ (2001) Assessment of photosynthesis in a spring cyanobacterial bloom by use of a fast repetition rate fluorometer. Limnol Oceanogr 46:802–810

    Google Scholar 

  • Suggett DJ, Le Floc’H E, Harris GN, Leonardos N, Geider RJ (2007) Different strategies of photoacclimation by two strains of Emiliania huxleyi (Haptophyta). J Phycol 43:1209–1222

    CAS  Google Scholar 

  • Suggett DJ, Maberly SC, Geider RJ (2006a) Gross photosynthesis and lake community metabolism during the spring phytoplankton bloom. Limnol Oceanogr 51:2064–2076

    CAS  Google Scholar 

  • Suggett DJ, MacIntyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Meth 2:316–332

    Google Scholar 

  • Suggett DJ, MacIntyre HL, Kana TM, Geider RJ (2009a) Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton. Aquat Microb Ecol 56:147–162

    Google Scholar 

  • Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009b) Interpretation of Fast Repetition Rate (FRR) fluorescence: signatures of community structure versus physiological state. Mar Ecol Prog Ser 376:1–19

    Google Scholar 

  • Suggett DJ, Moore CM, Marañón E, Omachi C, Varela RA, Aiken J, Holligan PM (2006b) Photosynthetic electron turnover in the tropical and subtropical Atlantic Ocean. Deep Sea Res II 53:1573–1592

    Google Scholar 

  • Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2003) Fast Repetition Rate and Pulse Amplitude Modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384

    Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige SJ, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    CAS  Google Scholar 

  • Sukenik A, Bennet J, Mortain-Bertrand A, Falkowski PG (1990) Adaptation of the photosynthetic apparatus to irradiance in Dunaliella tertiolecta. Plant Physiol 92:891–898

    CAS  Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169:95–108

    CAS  Google Scholar 

  • Williams PJ, Robertson JE (1991) Overall plankton oxygen and carbon dioxide metabolism: the problem of reconciling observations and calculations of photosynthetic quotients. J Plankon Res 13:153–169

    Google Scholar 

  • Weng J-H, Shieh Y-J (2004) Salicylhydroxamic acid (SHAM) inhibits O2 photoreduction which protects nitrogenase activity in the cyanobacterium Synechococcus sp. RF-1. Photosynth Res 82:151–164

    CAS  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 53:63–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Suggett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Suggett, D.J., Moore, C.M., Geider, R.J. (2010). Estimating Aquatic Productivity from Active Fluorescence Measurements. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_6

Download citation

Publish with us

Policies and ethics