Skip to main content

Restoration of Raised Bogs: Mechanisms and Case Studies from the Netherlands

  • Chapter
  • First Online:
Restoration of Lakes, Streams, Floodplains, and Bogs in Europe

Abstract

This chapter discusses and explains various peat bog restoration strategies relating to peat quality, water chemistry and hydrology based on case studies from the Netherlands. Inundation of bog remnants can lead to a rapid redevelopment of (floating) Sphagnum vegetation, usually when poorly humified Sphagnum peat is still present. After inundation, the peat either swells up to the newly created water table or becomes buoyant, in both cases creating a favourable substrate for Sphagnum mosses. Methane production rate and peat chemistry play an important role in the buoyancy of floating peat. The presence of (slightly) calcareous groundwater in the peat base may enhance the development of floating peat by stimulating decomposition processes. Alternatively, the growth of submerged Sphagnum species can also lead to the development of floating rafts. This depends on the availability of light and carbon dioxide in the water layer. Many bog remnants, however, only have strongly humified peat, which does not favour the redevelopment of Sphagnum carpets after deep inundation. On the other hand, most Sphagnum species appear to do very well on surface-soaked strongly humified peat, which is why shallow inundation is to be preferred in such cases. An important prerequisite for the successful restoration of bog remnants is the development of a hydrologically self-regulating acrotelm. Key species involved in this development are Sphagnum magellanicum, Sphagnum papillosum and Sphagnum rubellum. Since these species are usually very slow colonisers, introduction of key species can accelerate the development of a functional acrotelm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaby B (1994) Monitoring Danish raised bogs. In: Grünig A (ed) Mires and man. Mire conservation in a densely populated country – the Swiss experience. Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland, pp 284–300

    Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Aerts R, Wallén B, Malmer N (1992) Growth limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140

    Article  Google Scholar 

  • Aerts R, Wallén B, Malmer N, De Caluwe H (2001) Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. J Ecol 89:292–299

    Article  CAS  Google Scholar 

  • Aldous AR (2002) Nitrogen retention by Sphagnum mosses: responses to atmospheric nitrogen deposition and drought. Can J Bot 80:721–731

    Article  CAS  Google Scholar 

  • Altenburg W, Groeneweg M, Van der Veen K (2005) Hoogveenvegetaties in het Fochteloërveen. De Levende Natuur 106:102–106

    Google Scholar 

  • Baker RGE, Boatman DJ (1990) Some effects of nitrogen, phosphorus, potassium and carbon dioxide concentration on the morphology and vegetative reproduction of Sphagnum cuspidatum Ehrh. New Phytol 116:605–611

    Article  CAS  Google Scholar 

  • Barkman JJ (1992) Plant communities and synecology of bogs and heath pools in the Netherlands. In: Verhoeven JTA (ed) Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Kluwer, Dordrecht, The Netherlands, pp 173–235

    Chapter  Google Scholar 

  • Beltman B, Kooijman AM, Rouwenhorst G, Van Kerkhoven M (1996) Nutrient availability and plant growth limitation in blanket mires in Ireland. Biology and Environment. Proc R Irish Acad 96B:77–87

    Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shift in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–598

    Article  Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol Biochem 30:729–741

    Article  CAS  Google Scholar 

  • Bergman I, Klarqvist M, Nilsson M (2000) Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. FEMS Microbiol Ecol 33:181–189

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Uberoi V, Dronamraju MM (1996) Interaction between acetate fed sulfate reducers and methanogens. Water Res 30:2239–2246

    Article  CAS  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    Article  CAS  Google Scholar 

  • Bobbink R, Ashmore M, Braun S, Flückiger W, Van den Wyngaert IJJ (2003) Empirical nitrogen critical loads for natural and semi-natural ecosystems. In: Achermann B, Bobbink R (eds) Empirical critical loads for nitrogen. Proceedings expert workshop. Swiss Agency for the Environment, Forests and Landscape, Berne, Switzerland, pp 43–170

    Google Scholar 

  • Bossenbroek Ph, De Glopper A, Verdonschot F (2005) Veenmos in de Peel. Tussentijdse evaluatie van het verrnattingsproject Mariapeel-Deurnese peel. Natuurhistorisch Maandblad 94:222–226

    Google Scholar 

  • Bozkurt S, Lucisano M, Moreno L, Neretnieks I (2001) Peat as a potential analogue for the long-term evolution in landfills. Earth Sci Rev 53:95–147

    Article  CAS  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    Article  CAS  Google Scholar 

  • Brown A, Mathur SP, Kushner DJ (1989) An ombrotrophic bog as a methane reservoir. Global Biogeochem Cy 3:205–213

    Article  CAS  Google Scholar 

  • Buttler A, Grosvernier P, Matthey Y (1998) Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. J Appl Ecol 35:800–810

    Article  Google Scholar 

  • Campeau S, Rochefort L (1996) Sphagnum regeneration on bare peat surfaces: field and greenhouse experiments. J Appl Ecol 33:599–608

    Article  Google Scholar 

  • Campeau S, Rochefort L, Price JS (2004) On the use of shallow basins to restore cutover peatlands: plant establishment. Restor Ecol 12:471–482

    Article  Google Scholar 

  • Casper P, Maberly SC, Hall GH, Finlay BJ (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49:1–19

    Article  CAS  Google Scholar 

  • Coulson JC, Butterfield J (1978) An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650

    Article  Google Scholar 

  • Cronberg N (1991) Reproductive biology of Sphagnum. Lindbergia 17:69–82

    Google Scholar 

  • Damman WH (1988) Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos 51:291–305

    Article  Google Scholar 

  • De Vries HJ, Van der Werff L (1997) Integraal restauratieplan Fochteloërveen. Report Arcadis Heidemij Advies, The Netherlands

    Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Ganzevles PHJ (1991) Haaksbergerveen. Beheersplan voor de Periode 1991–2001. Report Buro Hemmen

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetlands Ecol Manage 11:109–119

    Article  CAS  Google Scholar 

  • Grosvernier P, Matthey Y, Buttler A (1995) Microclimate and physical properties of peat: new clues to the understanding of bog restoration processes. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 435–450

    Google Scholar 

  • Hassink J (1995) Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol Biochem 8:1099–1108

    Article  Google Scholar 

  • Hayward PM, Clymo RS (1983) The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth. J Ecol 71:845–863

    Article  Google Scholar 

  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, Van Breemen N (2001) Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–279

    Article  CAS  Google Scholar 

  • Van ‘t Hullenaar JW (1997) Hydrologisch inrichtingsplan voor hoogveengeneratie in het Fochteloërveen. Report Hullenaar Ecohydrologisch adviesbureau, Zwolle, The Netherlands

    Google Scholar 

  • Ingram HAP (1978) Soil layers in mires: function and terminology. J Soil Sci 29:224–227

    Article  Google Scholar 

  • Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos 61:234–242

    Article  Google Scholar 

  • Joosten JHJ (1995) Time to regenerate: long-term perspectives of raised bog regeneration with special emphasis on palaeoecological studies. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 379–404

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kok CJ, Van de Laar BJ (1991) Influence of pH and buffering capacity on the decomposition of Nymphaea alba L. detritus in laboratory experiments: a possible explanation for the inhibition of decomposition at low alkalinity. Verhandlungen der Internationale Verein für Theoretische und Angewandte Limnologie 24:2689–2692

    Google Scholar 

  • Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    Article  CAS  Google Scholar 

  • Lamers LPM, Farhoush C, Van Groenendael JM, Roelofs JGM (1999) Calcareous groundwater raises bogs; the concept of ombrotrophy revisited. J Ecol 87:639–648

    Article  Google Scholar 

  • Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in polluted raised bogs. Global Change Biol 6:583–586

    Article  Google Scholar 

  • Li Y, Vitt DH (1994) The dynamics of moss establishment: temporal responses to nutrient gradients. The Bryologist 97:357–364

    Article  Google Scholar 

  • Limpens J, Berendse F (2003a) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345

    PubMed  CAS  Google Scholar 

  • Limpens J, Berendse F (2003b) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Klees H (2003a) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  • Limpens J, Raymakers JTAG, Baar J, Berendse F, Zijlstra JD (2003b) The interactions between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103:59–68

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H (2004) How P availability affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804

    Article  CAS  Google Scholar 

  • Lloyd D, Thomas KL, Benstead J, Davies KL, Lloyd SH, Arah JRM, Stephens KD (1998) Methanogenesis and CO2 exchange in an ombrotrophic peat bog. Atmosph Environ 32:3223–3238

    Google Scholar 

  • Lütke Twenhöven F (1992) Competition between two Sphagnum species under different deposition levels. J Bryol 17:71–80

    Google Scholar 

  • Malmer N, Albinsson C, Svensson M, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–482

    Article  Google Scholar 

  • Meade R (1992) Some early changes following the rewetting of a vegetated cutover peatland surface at Danes Moss, Cheshire, UK, and their relevance to conservation management. Biol Conserv 61:31–40

    Article  Google Scholar 

  • Middleboe AL, Markager S (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37:553–568

    Article  Google Scholar 

  • Money RP (1995) Re-establishment of a Sphagnum-dominated flora on cut-over lowland raised bogs. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 405–422

    Google Scholar 

  • Money RP, Wheeler BD (1999) Some critical questions concerning the restorability of damaged raised bogs. Appl Veg Sci 2:107–116

    Article  Google Scholar 

  • Neijenhuijs F (1973) Raised bogs in the Netherlands: a disappearing type of landscape? Natuur Landschap 27:98–126

    Google Scholar 

  • Nordin A, Gunnarsson U (2000) Amino acid accumulation and growth of Sphagnum under different levels of N deposition. Ecoscience 7:474–480

    Google Scholar 

  • Paffen BPG, Roelofs JGM (1991) Impact of carbon dioxide and ammonium on the growth of submerged Sphagnum cuspidatum. Aquat Bot 40:61–71

    Article  CAS  Google Scholar 

  • Poschlod P (1995) Diaspore rain and diaspore bank in raised bogs and implications for the restoration of peat-mined sites. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 471–494

    Google Scholar 

  • Price JS, Heathwaite AL, Baird AJ (2003) Hydrological processes in abandoned and restored peatlands: an overview of management approaches. Wetlands Ecol Manage 11:65–83

    Article  CAS  Google Scholar 

  • Proctor MCF (1995) The ombrogenous bog environment. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 287–303

    Google Scholar 

  • Rice SK, Schuepp PH (1995) On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae). Am J Bot 82:833–846

    Article  Google Scholar 

  • Riis T, Sand-Jensen K (1997) Growth reconstruction and photosynthesis of aquatic mosses: influence of light, temperature and carbon dioxide at depth. J Ecol 85:359–372

    Article  Google Scholar 

  • Robert CE, Rochefort L, Garneau M (1999) Natural revegetation of two block-cut mined peatlands in eastern Canada. Can J Bot 77:447–459

    Google Scholar 

  • Rochefort L, Campeau S, Bugnon JL (2002) Does prolonged flooding prevent or enhance regeneration and growth of Sphagnum? Aquat Bot 74:327–341

    Article  Google Scholar 

  • Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American appoach to the restoration of Sphagnum dominated peatlands. Wetlands Ecol Manage 11:3–20

    Article  CAS  Google Scholar 

  • Rydin H (1993) Interspecific competition among Sphagnum mosses on a raised bog. Oikos 66:413–423

    Article  Google Scholar 

  • Rydin H, Barber KE (2001) Long-term and fine-scale coexistence of closely related species. Folia Geobotanica 36:53–61

    Article  Google Scholar 

  • Schouten MGC, Schouwenaars JM, Esselink H, Lamers LPM, Van der Molen PC (1998). Bog restoration in the Netherlands – dreams and reality. In: Bobbink R, Roelofs JGM, Tomassen HBM (eds) Nature management and the conservation of biodiversity in the Netherlands. Nijmegen, the Netherlands: Katholieke Universiteit Nijmegen, in Dutch, pp 93–112

    Google Scholar 

  • Schouwenaars JM, Esselink H, Lamers LPM, Van der Molen PC (2002) Restoration of peat bogs in the Netherlands. Current knowledge and future research. Report 2002/084. Ministry of Agriculture, Nature Management and Fisheries, Wageningen, The Netherlands

    Google Scholar 

  • Scott KJ, Kelly CA, Rudd JWM (1999) The importance of floating peat to methane fluxes from flooded peatlands. Biogeochemistry 47:187–202

    CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption; a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Sliva J (1998) Regeneration of milled peat bog: a large scale approach in Kollerfilze (Bavaria, Southern Germany). In: T. Malterer T, Johnson K, Stuart J (eds) Peatland restoration and reclamation. Proceedings of the 1998 international peat symposium, Duluth, Minnesota. International Peat Society, Duluth, MN, pp 82–87

    Google Scholar 

  • Sliva J, Pfadenhauer J (1999) Restoration of cut-over raised bogs in southern Germany – a comparison of methods. Appl Veg Sci 2:137–148

    Article  Google Scholar 

  • Sliva J, Maas D, Pfadenhauer J (1997) Rehabilitation of milled fields. In: Parkyn L, Stoneman RE, Ingram HAP (eds) Conserving peatlands. CAB International, Wallingford, pp 295–314

    Google Scholar 

  • Smolders AJP, Tomassen HBM, Pijnappel H, Lamers LPM, Roelofs JGM (2001) Substrate-derived CO2 is important in the development of Sphagnum spp. New Phytol 152:325–332

    Article  Google Scholar 

  • Smolders AJP, Tomassen HBM, Lamers LPM, Lomans BP, Roelofs JGM (2002) Peat bog formation by floating raft formation: the effects of groundwater and peat quality. J Appl Ecol 39:391–401

    Article  CAS  Google Scholar 

  • Smolders AJP, Tomassen HBM, Van Mullekom M, Lamers LPM, Roelofs JGM (2003) Mechanisms involved in the re-establishment of Sphagnum-dominated vegetation in rewetted bog remnants. Wetlands Ecol Manage 11:403–418

    Article  Google Scholar 

  • Soro A, Sundberg S, Rydin H (1999) Species diversity, niche metrics and species associations in harvested and undisturbed bogs. J Veg Sci 10:549–560

    Article  Google Scholar 

  • Sundberg S, Rydin H (2000) Experimental evidence for a persistent spore bank in Sphagnum. New Phytol 148:105–116

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkely, CA

    Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003a) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. J Ecol 91:357–370

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, Van Herk JM, Lamers LPM, Roelofs JGM (2003b) Restoration of cut-over bogs by floating raft formation: an experimental feasibility study. Appl Veg Sci 6:141–152

    Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2004a) Development of floating rafts after the rewetting of cut-over bogs: the importance of peat quality. Biogeochemistry 71:69–87

    Article  CAS  Google Scholar 

  • Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004b) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? J Appl Ecol 41:139–150

    Article  CAS  Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2005) How bird droppings can affect the vegetation composition of ombrotrophic bogs. Can J Bot 83:1046–1056

    Article  Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163

    Article  Google Scholar 

  • Van den Pol-van Dasselaar A, Oenema O (1999) Methane production and carbon mineralisation of size and density fractions of peat soils. Soil Biol Biochem 31:877–886

    Article  Google Scholar 

  • Van der Schaaf S (2002) Using surface topography to assess potential and actual ecological conditions in Irish Midland raised bogs. Annals of Warsaw Agricultural University. Land Reclam 33:49–56

    Google Scholar 

  • Van der Schaaf S, Streefkerk JG (2002) Relationships between biotic and abiotic conditions. In: Schouten MGC (ed) Conservation and restoration of raised bogs. Geological, hydrological and ecological studies. Dúchas, The Heritage Service of the Environment and Local Government, Geological Survey of Ireland, Dublin, Ireland, Staatsbosbeheer, pp 186–209

    Google Scholar 

  • Watson MA (1980) Shifts in patterns of microhabitat occupation by six closely related species of mosses along a complex altitudinal gradient. Oecologia 47:46–55

    Article  Google Scholar 

  • Weber CA (1900) Ueber die Moore mit besonderer berücksichtigung der zwischen Unterweser und Unterelbe liegenden. Jahresbericht der Männer vom Morgenstern 3:3–23

    Google Scholar 

  • Weber CA (1907) Aufbau und Vegetation der Moore Norddeutschlands. Beiblatt zu Englers Bot Jahrb 90:19–34

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  • Wheeler BD, Shaw SC (1995) Restoration of damaged peatlands. Department of the Environment, HMSO, London

    Google Scholar 

  • Williams RT, Crawford RL (1984) Methane production in Minnesota peatlands. Appl Environ Microbiol 47:266–271

    Google Scholar 

  • Yavitt JB, Lang GE, Wieder RK (1987) Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry 4:141–157

    Article  CAS  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316

    Article  CAS  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (2000) Controls on microbial production of methane and carbon dioxide in three Sphagnum-dominated peatland ecosystems as revealed by a reciprocal field peat transplant experiment. Geomicrobiol J 17:61–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ‘Staatsbosbeheer’ and ‘Natuurmonumenten’ for giving permission to perform the experiments in their bogs. Mark van Mullekom, Jeroen Geurts, Hein Pijnappel, Jurgen Memelink, Frank Spikmans, Ellen van Halteren and Marjo van Herk provided practical assistance. Phlip Bossenbroek gave information about restoration measures in the Mariapeel bog. Part of this research was funded by the Dutch Ministry of Agriculture, Nature and Food Quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde B. M. Tomassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Tomassen, H.B.M., Smolders, A.J.P., van der Schaaf, S., Lamers, L.P.M., Roelofs, J.G.M. (2010). Restoration of Raised Bogs: Mechanisms and Case Studies from the Netherlands. In: Eiseltová, M. (eds) Restoration of Lakes, Streams, Floodplains, and Bogs in Europe. Wetlands: Ecology, Conservation and Management, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9265-6_15

Download citation

Publish with us

Policies and ethics