Skip to main content

High-Pressure Crystallography of Biomolecules: Recent Achievements. I – Introduction, Materials and Methods

  • Conference paper
  • First Online:
High-Pressure Crystallography

Abstract

High-pressure molecular biophysics is a developing field for three main reasons. Pressure has a unique potential, in particular for the exploration of the energy landscape of biomolecules. Progress in instrumentation has extended the range of biophysical techniques under pressure and often relaxed technical constraints on sample confinement. Two high-resolution structural methods are now available at high pressure, NMR and macromolecular crystallography (HPMX). We describe materials and methods of HPMX, now a full-fledged technique taking advantage of purposely-built diamond-anvil cells, ultra-short wavelength synchrotron radiation and improved crystal-loading procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka, K., 2006, Probing conformational fluctuations of proteins by pressure perturbation, Chem. Rev. 106:1814–1835.

    Article  Google Scholar 

  • Anfinsen, C.B., 1973, Principles that govern the folding of protein chains, Science 181:223–230.

    Article  ADS  Google Scholar 

  • Balny, C., Hayashi, R., Heremans, K., and Masson, P. (ed.), 1992,High pressure and biotechnology, Colloque INSERM 224, John Libbey, London.

    Google Scholar 

  • Boehler, R., and de Hantsetters, K., 2004, New anvil designs in diamond-cells, High Press. Res. 24:1–6.

    Article  Google Scholar 

  • Bridgman, P.W., 1914, The coagulation of albumin by pressure, J. Biol. Chem. 19:511–512.

    Google Scholar 

  • Forman, R.A., Piermarini, G.J., Barnett, J.D., and Block, S., 1972, Pressure measurement made by the utilization of ruby sharp-line luminescence, Science 176:284–285.

    Article  ADS  Google Scholar 

  • Fourme R., 1968, Appareillage pour études radiocristallographiques sous pression et à température variable, J. Appl. Cryst. 1:23–29.

    Article  Google Scholar 

  • Fourme, R., Girard, E., Kahn, R., Ascone, I., Mezouar, M., Dhaussy A.C., Lin, T.W., and Johnson, J.E., 2003, Using a quasi-parallel X-ray beam of ultra-short wavelength for high-pressure virus crystallography: implications for standard macromolecular crystallography, Acta Cryst.D 59:1767–1772.

    Article  Google Scholar 

  • Fourme, R., Girard, E., Kahn, R., Dhaussy, A.-C., and Ascone, I., 2009, Advances in high-pressure biophysics: status and prospects of macromolecular crystallography, Ann. Rev. Biophys. 38:153–171.

    Article  Google Scholar 

  • Fourme, R., Kahn, R., Mezouar, M., Girard, E., Hoerentrup, C., Prange, C., Ascone, I., 2001, High pressure protein crystallography (HPPX): instrumentation, methodology and results of data collection on lysozyme crystals, J. Synchrotron Rad. 8:1149–1156.

    Article  Google Scholar 

  • Girard, E., Dhaussy, A.-C., Couzinet, B., Chervin, J.C., Mezouar, M., Kahn, R., Ascone, I., and Fourme, R., 2007, Toward full-fledged high-pressure macromolecular crystallography (HPMX), J. Appl. Cryst. 40:912–918.

    Article  Google Scholar 

  • Girard, E., Fourme, R., Ciurko, R., Joly, J., Bouis, F., Legrand, P., Jacobs, J., Dhaussy, A.-C., Ferrer, J.-L., Mezouar, M. and Kahn, R., 2010, Macromolecular crystallography at high pressure with pneumatic diamond-anvil cells handled by a six-axis robotic arm, J. Appl. Cryst. 43: xxx–xxx.

    Google Scholar 

  • Girard, E., Prangé, T., Dhaussy, A.-C., Migianu, E., Lecouvey, M., Chervin, J.-C., Mezouar, M., Kahn, R., Fourme, R., 2007, Adaptation of base-paired double-helix to extreme hydrostatic pressure, Nucl. Acids Res. 35(14):4800–4808.

    Article  Google Scholar 

  • Gross, M., and Jaenicke, R., 1994, The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes, Eur. J. Biochem. 221:617–630.

    Article  Google Scholar 

  • Horikoshi, K., and Grant, W.D., 1998, Extremophiles. Microbial life in extreme environments, Wiley-Liss, New York.

    Google Scholar 

  • Kabsch, W., 1993, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, J. Appl. Cryst. 26:795–800.

    Article  Google Scholar 

  • Katrusiak, A., and Dauter, Z., 1996, Compressibility of lysozyme crystals by X-ray diffraction, Acta Cryst. D 52:607–608.

    Article  Google Scholar 

  • Kundrot, C.E., and Richards, F.M., 1987, Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres, J. Mol. Biol. 193:157–170.

    Article  Google Scholar 

  • Le Toullec, R., Pinceaux, J.-P., and Loubeyre, P., 1988, The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations, High Press. Res. 1:77–90.

    Article  ADS  Google Scholar 

  • Merrill, L.L., and Bassett, W.A., 1974, Miniature diamond anvil pressure cell for single crystal X-ray diffraction studies, Rev. Sci. Instrum. 45:290–294.

    Article  ADS  Google Scholar 

  • Mezouar, M., Crichton, W.A., Bauchau, S., Thurel, F., Witsch, H., Torrecillas, F, Blattmann, G., Marion, P., Dabin, Y., Chavanne, J., Hignette, O., Morawe, C., and Borel, C., 2005, Development of a new state-of-the-art beamline optimized for monochromatic single-crystal and powder X-ray diffraction under extreme conditions at the ESRF, J. Synchrotron. Rad. 12:659–664.

    Article  Google Scholar 

  • Mozhaev, V.V., Heremans, K., Franks, J., Masson, P., and Balny, C., 1994, Exploiting the effect of high hydrostatic pressure in biotechnological applications, Trends Biotechnol. 12:493–501.

    Article  Google Scholar 

  • Van Valkenburg A., 1962, Visual observations of high pressure transitions, Rev. Sci. Instrum. 33:1462.

    Article  ADS  Google Scholar 

  • Weber, G., 1992, Protein interactions, Chapman & Hall, New York, pp. 211–214.

    Google Scholar 

  • Weber, G., 1992, Thermodynamics of the association and the pressure dissociation of oligomeric proteins, J. Phys. Chem. 97:7108–7115.

    Article  Google Scholar 

  • Weir, C.E., Lippincott, E.R., Van Valkenburg, A., Bunting, E.N., 1959, Infrared studies in the 1-micron to 15-micron region to 30,000 atmospheres, J. Res. Natl. Bur. Stand. – Phys. Chem. 63A:55–62.

    Article  Google Scholar 

  • Yayanos, A.A., and Delong, E.F., 1987, Deep-sea bacterial fitness to environmental temperatures and pressures. In: Current perspectives in high pressure biology, edited by H.W. Jannasch et al., Academic Press, London, pp. 17–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Fourme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fourme, R., Ascone, I., Mezouar, M., Dhaussy, AC., Kahn, R., Girard, E. (2010). High-Pressure Crystallography of Biomolecules: Recent Achievements. I – Introduction, Materials and Methods. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_48

Download citation

Publish with us

Policies and ethics