Skip to main content

High-Pressure Studies of Energetic Materials

  • Conference paper
  • First Online:
High-Pressure Crystallography

Abstract

High-pressure studies of energetic materials provide valuable information about how these compounds behave under the extreme conditions experienced during detonation. Spectroscopic and diffraction techniques, augmented by computational methods, provide insight into the effects of pressure on intermolecular interactions and phase transitions. Some examples of studies on representative compounds are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhavan, J., 2004, in The Chemistry of Explosives, 2nd edn., Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Baer, B. J., Oxley, J., and Nicol, M., 1990, The phase diagram of RDX (hexahydro-1,3,5-trinitro-s-triazine) under hydrostatic pressure, High Press. Res., 2: 99–108.

    Article  ADS  Google Scholar 

  • Bemm, U., and Östmark, H., 1998, 1,1-Diamino-2,2-dinitroethylene: A novel energetic material with infinite layers in two dimensions, Acta Cryst. C 54: 1997–1999.

    Article  Google Scholar 

  • Bernstein, J., 2002, in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography, Clarendon Press, Oxford.

    Google Scholar 

  • Bircumshaw, L.L., and Newman B.H., 1954, The thermal decomposition of ammonium perchlorate. I. Introduction, experimental analysis of gaseous products, and thermal decomposition experiments, Proc. Roy. Soc. London A, 227: 115–132.

    Article  ADS  Google Scholar 

  • Choi, C. S., and Prince, E., 1972, Crystal structure of cyclotrimethylenetrinitramine, Acta Cryst., B 28: 2857–2862.

    Article  Google Scholar 

  • Ciezak, J.A., Jenkins T.A., and Liu Z., 2007a, Evidence for a high-pressure phase transition of ε- 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) using vibrational spectroscopy, Propellants, Explos. Pyrotech., 32: 472–477.

    Article  Google Scholar 

  • Ciezak, J.A., Jenkins, T.A., Liu, Z., and Hemley, R.J., 2007b, High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), J. Phys. Chem. A, 111: 59–63.

    Article  Google Scholar 

  • Ciezak, J.A., and Jenkins, T.A., 2008, The low-temperature high-pressure phase diagram of energetic materials: I. hexahydro-1,3,5-trinitro-s-triazine, Propellants, Explos. Pyrotech., 33: 390–395.

    Article  Google Scholar 

  • Crawford, M-J., Evers J., Göbel M., Klapötke T.M., Mayer P., Oehlinger G., and Welch J.M., 2007, γ-FOX-7: structure of a high energy density material immediately prior to decomposition, Propellants, Explos. Pyrotech., 32: 478–495.

    Article  Google Scholar 

  • Davidson, A.J., Allan, D.R., Oswald, I.D.H., Pulham, C.R., Fabbiani, F.P.A., Francis, D.J., Marshall, W.G., Smith R.I., Cumming, A.S., Lennie, A.R., and Prior, T.J., 2007, High-pressure structural studies of energetic ammonium compounds. Proceedings of the 38th International Annual Conference of ICT: Energetic Materials: Characterisaton and Performance of Advanced Systems, Karlsruhe, Germany, 26–29 June 2007, 41/1–41/12.

    Google Scholar 

  • Davidson, A.J., Oswald, I.D.H., Francis, D.J., Lennie, A.R., Marshall, W.G., Millar, D.I.A., Pulham, C.R., Warren, J.E. and Cumming, A.S., 2008, Explosives under pressure–the crystal structure of γ-RDX as determined by high-pressure X-ray and neutron diffraction, Cryst. Eng. Comm., 10: 162–165.

    Article  Google Scholar 

  • Dreger, Z.A., and Gupta Y.M., 2007, High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), J. Phys. Chem. B, 111: 3893–3903.

    Article  Google Scholar 

  • Esposito, A.P., Farber, D.L., Reaugh, J.E., and Zaug, J.M., 2003, Reaction propagation rates in HMX at high pressure, Propellant., Explos., Pyrotech., 28: 83–88.

    Article  Google Scholar 

  • Evers, J., Klapötke T.M., Mayer P., Oehlinger G., and Welch J., 2006, Alpha- and beta-FOX-7, polymorphs of a high energy density material, studied by x-ray single crystal and powder investigations in the temperature range from 200 to 423 K, Inorg. Chem., 45: 4996–5007.

    Article  Google Scholar 

  • Gump, J.C., and Peiris, S.M., 2005, Isothermal equations of state of beta-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine at high temperatures, J. Appl. Phys., 97: 053513–053513/7.

    Article  ADS  Google Scholar 

  • McCrone, W.C., 1950, RDX (Cyclotrimethylenetrinitramine), Anal. Chem., 22: 954–955.

    Article  Google Scholar 

  • Millar, D.I.A., Oswald, I.D.H., Francis, D.J., Marshall, W.G., Pulham, C.R., and Cumming A.S., 2009, The crystal structure of β-RDX–an elusive form of an explosive revealed, Chem. Commun., 5: 562–564.

    Article  Google Scholar 

  • Millar, D.I.A., Oswald, I.D.H., Francis, D.J., Marshall, W.G., Pulham, C.R., and Cumming, A.S., Pressure-cooking of explosives–the crystal structure of ε-RDX as determined by X-ray and neutron diffraction, unpublished results.

    Google Scholar 

  • Miller, P.J., Block, S., and Piermarini, G.J., 1991, Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX, Combust. Flame, 83, 174–184.

    Article  Google Scholar 

  • Palmer, S.J.P., and Field, J.E., The deformation and fracture of β-HMX, Proc. R. Soc. London A, 1982, 383: 399–407.

    Article  ADS  Google Scholar 

  • Peiris, S.M., and Piermarini, G.J., 2009, Static Compression of Energetic Materials, Springer, New York.

    Google Scholar 

  • Peiris, S.M., Pangilinan G.I., and Russell T.P., 2000, Structural properties of ammonium perchlorate compressed to 5.6 GPa, J. Phys. Chem. A 104: 11188–11193.

    Article  Google Scholar 

  • Peiris, S.M., Wong, C.P., and Zerilli, F.J., 2004, Equation of state and structural changes in diaminodinitroethylene under compression, J. Chem. Phys. 120: 8060–8066.

    Article  ADS  Google Scholar 

  • Politzer, P., and Murray J.S., 2003, Energetic Materials: Detonation, Combustion, Elsevier, Amsterdam.

    Google Scholar 

  • Russell, T.P., Miller P.J., Piermarini G.J., and Block S., 1993, Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane, J. Phys. Chem., 97 (9): 1993–1997.

    Article  Google Scholar 

  • Shaw, R.W., Brill, T.B., and Thompson, D.L., (ed), 2005, Overviews of recent research on energetic materials, Adv.Series Phys. Chem., 16, (World Scientific, Singapore).

    Google Scholar 

  • Sorescu, D.C., Rice, B.M., and Thompson, D.L., 1999, Theoretical studies of the hydrostatic compression of RDX, HMX, HNIW, and PETN crystals, J. Phys. Chem., 103: 6783–6790.

    Article  Google Scholar 

  • Stammler, M., Bruenner R., Schmidt W., and Orcutt D., 1966, Rotational polymorphism of methyl-substituted ammonium perchlorates, Adv. X-ray Anal., 9: 170–189.

    Google Scholar 

  • Yoo, C.S., and Cynn, H., 1999, Equation of state, phase transition, decomposition of.beta.-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures, J. Phys. Chem., 111: 10229–10235.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Defence Science and Technology Laboratory (through A. S. Cumming) and EPSRC for contributions toward a studentship (DIAM), the STFC for the provision of neutron and x-ray beamtime, the Leverhulme Trust for a fellowship (IDHO), and MOD WPE for funding under the terms of contract RD028-06366. We are grateful to D. R. Allan and S. Parsons for their contribution to the development of data collection and analysis strategies, and to A. R. Lennie, J. E. Warren, and D. J. Francis for instrument development at the SRS Daresbury Laboratory and the ISIS Neutron Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin R. Pulham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pulham, C.R., Millar, D.I.A., Oswald, I.D.H., Marshall, W.G. (2010). High-Pressure Studies of Energetic Materials. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_36

Download citation

Publish with us

Policies and ethics