Skip to main content

The Charm of Subtle H-Bonds Transformations

Specific Features of Hydrogen-Bonds at Increased Pressure

  • Conference paper
  • First Online:
Book cover High-Pressure Crystallography

Abstract

The human presence and activities on Earth is mainly confined to the temperature range of few hundred kelvin and pressure range of few tenth of a GPa (at explosions). Therefore most of chemical and materials-sciences knowledge has been determined experimentally at these thermodynamic conditions. A more general knowledge is advantageous, as it allows one to extend the understanding of physical and chemical phenomena to any conditions. Actually, the normal conditions are quite unique in Universe – usually temperature and pressure are much lower or much higher outside the biosphere of Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan, D.R., Loveday, J.S., Nelmes, R.J., and Thomas, P.A., 1994, A high-pressure structural study of potassium titanyl phosphate (KTP) up to 5GPa, J. Phys. Condensed Matter. 4: 2747–2760.

    Article  ADS  Google Scholar 

  • Boldyreva, E.V., Naumov, D.Yu., and Ahsbahs, H., 1998, Distortion of crystal structures of some CoIII ammine complexes. III. Distortion of crystal structure of [Co(NH3)5NO2]Cl2 at hydrostatic pressures up to 3.5 GPa, Acta Cryst. B. 54: 798–808.

    Article  Google Scholar 

  • Boldyreva, E.V., Shakhtshneider, T.P., Vasilchenko, M.A., Ahsbahs, H., and Uchtmann H., 2000, Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressure, Acta Cryst. B. 56: 299–309.

    Article  Google Scholar 

  • Budzianowski, A., and Katrusiak, A., 2002, Coupling of the lactone-ring conformation with crystal symmetry in 6-hydroxy-4,4,5,7,8-pentamethyl-3,4-dihydrocoumarin, Acta Cryst. B. 58: 125–133.

    Article  Google Scholar 

  • Budzianowski, A., Katrusiak, A., and Szafrański, M., 2008, Anomalous protonic-glass evolution from ordered phase in NH...N hydrogen-bonded dabcoHBF4 ferroelectric, J. Phys. Chem. B. 112: 16619–16625.

    Article  Google Scholar 

  • Bujak, M., Podsiadło, M., and Katrusiak, A., 2008, Energetics of conformational conversion between 1,1,2-trichloroethane polymorphs, Chem. Commun.: 4439–4441.

    Google Scholar 

  • Franks, F. (Ed.), 1972, Water A Comprehensive Treatise, Plenum Press, New York/London.

    Google Scholar 

  • Gajda, R., and Katrusiak, A., 2008, Pressure-freezing with conformational conversion of 3-aminopropan-1-ol molecules, Acta Cryst. B. 64: 476–482.

    Article  Google Scholar 

  • Hazen, R.M., Hoering, Th.C., and Hofmeister, A.M., 1987, Compressibility and high-pressure phase transition of a metalloporphyrin: (5,10,15,20-ttetraphenyl-21H,23H-porphinato)cobalt (II), J. Phys. Chem. 91: 5042–5045.

    Article  Google Scholar 

  • Herbstein, F.H., 1996, Some applications of thermodynamics in crystal chemistry, J. Mol. Struct. 374: 111–128.

    Article  ADS  Google Scholar 

  • Hollander, F.J., Semmingsen, D., and Koetzle, T.F., 1977, The molecular and crystal structure of squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) at 121°C: A neutron diffraction study, J. Chem. Phys. 67: 4825–4831.

    Article  ADS  Google Scholar 

  • Katrusiak, A., 1995, Coupling of displacive and order-disorder transformations in hydrogen-bonded ferroelectrics, Phys. Rev. B. 51:589–592.

    Article  ADS  Google Scholar 

  • Katrusiak, A., 1990, High-pressure X-ray diffraction study on the structure and phase transition of 1,3-cyclohexanedione crystals, Acta Cryst. B. 46: 246–256.

    Article  Google Scholar 

  • Katrusiak, A., 1991, Structure and phase transition of 1,3-cyclohexanedione crystals as a function of temperature, Acta Cryst. B. 47: 873–879.

    Article  Google Scholar 

  • Katrusiak, A., 1993, Geometric effects of H-atom disordering in hydrogen-bonded ferroelectrics, Phys. Rev. B 48: 2992–3002; Stereochemistry and transformation of –OH∙∙∙O= hydrogen bonds. Part I. Polymorphism and phase transition of 1,3-cyclohexanedione crystals, J. Mol. Struct. 269: 329–354.

    Article  ADS  Google Scholar 

  • Katrusiak, A., 1996a, Macroscopic and structural effects of hydrogen-bond transformations, Crystallogr. Rev. 5: 133–180.

    Article  Google Scholar 

  • Katrusiak, A., 1996b, Rigid H2O molecule model of anomalous thermal expansion of ice, Phys. Rev. Lett. 77: 4366–4369.

    Article  ADS  Google Scholar 

  • Katrusiak, A., 1996c, Stereochemistry and transformation of –OH∙∙∙O= hydrogen bonds. Part II. Evaluation of Tc in hydrogen-bonded ferroelectrics from structural data, J. Mol. Struct. 374: 177–189.

    Article  ADS  Google Scholar 

  • Katrusiak, A., 1996d, Structural origin of tricritical point in KDP-type ferroelectrics, Ferroelectrics 188: 5–10.

    Article  Google Scholar 

  • Katrusiak, A., 1998, Modelling hydrogen-bonded crystal structures beyond resolution of diffraction methods, Pol. J. Chem. 72: 449–459.

    Google Scholar 

  • Katrusiak, A., 1999, Stereochemistry and transformations of NH∙∙∙N hydrogen bonds. Part~I. Structural preferences for the H-site, J. Mol. Struct. 474: 125–133.

    Article  ADS  Google Scholar 

  • Katrusiak, A., 2001, Pressure-induced H-transfers in the networks of hydrogen bonds, in H. D. Hochheimer, B. Kuchta, P. K. Dorhout and J. F. Yarger (eds.) Frontiers of High Pressure Research II Application of High Pressure to Low-Dimensional Novel Electronic Materials, Kluwer, Dordrecht, pp. 73–85.

    Chapter  Google Scholar 

  • Katrusiak, A., and Szafrański, M., 1999, Ferroelectricity in NH∙∙∙N hydrogen-bonded crystals, Phys. Rev. Lett. 82: 576–579.

    Article  ADS  Google Scholar 

  • Klamut, J., Durczewski, K., and Sznajd, J., 1979, Wstęp do fizyki przejść fazowych, Ossolineum, Wrocław. [in Polish].

    Google Scholar 

  • Kobayashi, J., Uesu, Y., Mizutani, I., and Enomoto, Y., 1970, X-ray study on thermal expansion of ferroelectric KH2PO4, Physica Stat. Solidi (a) 3: 63–69.

    Article  ADS  Google Scholar 

  • Kuhs, W.F., and Lehmann, M.S., 1986, The structure of ice-Ih, Water Sci. Rev. 2: 1–65.

    Article  Google Scholar 

  • McMullan, R. K., Thomas, R., and Nagle, J. F., 1982, Structures of the paraelectric and ferroelectric phases of NaD3(SeO3)2 by neutron diffraction: a vertex model for the ordered ferroelectric state, J. Chem. Phys. 77: 537–547.

    Article  ADS  Google Scholar 

  • Nelmes, R.J., 1987, Structural studies of KDP and KDP-type transition by neutron and X-ray diffraction: 1970–1985, Ferroelectrics 71: 87–123.

    Article  Google Scholar 

  • Nylud, E.S., and Tsironis, G.P., 1991, Evidence for solitons in hydrogen-bonded systems, Phys. Rev. Lett. 66: 1886–1889.

    Article  ADS  Google Scholar 

  • Ohimine, I., and Saito, Sh., 1999, Water dynamics: fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement, Acc. Chem. Res. 32: 741–749.

    Article  Google Scholar 

  • Poprawski, R., and Dziedzic, J., 1988, Hydrostatic pressure influence on phase transitions in rubidium hydrogen selenate crystals, Solid State Commun., 66: 1257–1260.

    Article  ADS  Google Scholar 

  • Poprawski, R., Mróz, J., Czapla, Z., and Sobczyk, L., 1979, Ferroelectric properties and domain structure in RbHSeO4 crystals, Acta Phys. Polon. A. 55: 641–646.

    Google Scholar 

  • Putkonen, M.-L., Feld, R., Vettier, C., and Lehmann, M.S., 1985, Powder neutron diffraction analysis of the hydrogen bonding in deutero-oxalic acid dihydrate at high pressures, Acta Cryst. B. 41: 77–79.

    Article  Google Scholar 

  • Samara, G. A., and Semmingsen, D., 1979, Effects of pressure on the dielectric properties and phase transition of the 2-D antiferroelectric squaric acid (H2C4O4 and D2C4O4), J. Chem. Phys. 71: 1401–1407.

    Article  ADS  Google Scholar 

  • Semmingsen, D., Hollander, F.J., and Koetzle, T.F., 1977, A neutron diffraction study of squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), J. Chem. Phys. 66: 4405–4412.

    Article  ADS  Google Scholar 

  • Szafrański, M., and Katrusiak, A., 2008, Giant dielectric anisotropy and relaxor ferroelectricity induced by proton transfers in NH+∙∙∙N-bonded supramolecular aggregates, J. Phys. Chem. B. 112: 6779–6785.

    Article  Google Scholar 

  • Szafrański, M., Katrusiak, A., and McIntyre, G.J., 2002, Ferroelectric order of parallel bistable hydrogen bonds, Phys. Rev. Lett. 89: 215507-1-4.

    ADS  Google Scholar 

  • Yasuda, N., Okamoto, M., Shimizu, H., Fujimoto, S., Yoshino, K., and Inuishi, Y., 1978, Pressure-induced antiferroelectricity in ferroelectric CsH2PO4, Phys. Rev. Lett. 41: 1311–1314.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Katrusiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Katrusiak, A. (2010). The Charm of Subtle H-Bonds Transformations. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_17

Download citation

Publish with us

Policies and ethics