Skip to main content

Phase Transitions in AB Systems. Symmetry Aspects

  • Conference paper
  • First Online:
High-Pressure Crystallography
  • 2357 Accesses

Abstract

Possible pathways for pressure-induced reconstructive phase transitions in AB compounds can be derived if a common subgroup of the space groups of the phases before and after the phase transformation is found, which allows a deformation of one structure type into the other. An energetically favoured path avoids the breaking of bonds. Therefore, the concept of sphere packings enables to find suitable transition mechanisms. This is exemplarily shown for a transition path from the zinc-blende- to the NaCl-structure type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanco, M.A., Recio, J.M., Costales, A., & Pandey, R., 2000, Transition path for the B3⇔B1 phase transformation in semiconductors. Phys. Rev. B 62: R10599–R10602.

    Article  ADS  Google Scholar 

  • Buerger, J., 1951, Phase Transformations in Solids, edited by R. Smoluchowski, J.E. Mayers, and W.A. Weyl. Wiley, New York, pp 183–211.

    Google Scholar 

  • Cai, J., Chen, N., & Wang, H., 2007, Atomistic study of the pressure-induced phase-transition mechanism in GaAs by Möbius inversion potentials. J. Phys. Chem. Solids 68: 445–457.

    Article  ADS  Google Scholar 

  • Capillas, C., Perez-Mato, J.M., & Aroyo, M.I., 2007, Maximal symmetry transition paths for reconstructive phase transitions. J. Phys.: Condens. Matter 19: 275203.

    Article  ADS  Google Scholar 

  • Catti, M., 2001, Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure. Phys. Rev. Lett. 87: 35504.

    Article  ADS  Google Scholar 

  • Catti, M., 2002, Reply to the comment on “Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure”. Phys. Rev. Lett. 88: 189602.

    Article  ADS  Google Scholar 

  • Catti, M., 2005, Kinetic mechanisms of the pressure-driven phase transitions of AgI. Phys. Rev. B 72: 064105.

    Article  ADS  Google Scholar 

  • Christy, A.G., 1993, Multistage diffusionsless pathways for reconstructive phase transitions: Application to binary compounds and calcium carbonate. Acta Crystallogr. B. 49: 987–996.

    Article  Google Scholar 

  • Corll, J.A., 1967, Effect of pressure on the elastic parameters and structure of CdS. Phys. Rev. 157: 623–626.

    Article  ADS  Google Scholar 

  • Dmitriev, V.P., Rochal, S.B., Gufan, Yu.M., & Tolédano, P., 1988, Definition of a transcendental order parameter for reconstructive phase transitions. Phys. Rev. Lett. 60: 1958–1961.

    Article  ADS  Google Scholar 

  • Dmitriev, V.P., & Tolédano, P., 1996, Reconstructive phase transitions in crystals and quasicrystals. World Scientific Publishing Company, Singapore.

    Google Scholar 

  • Fischer, W., 1973, Existenzbedingungen homogener Kugelpackungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden. Z. Kristallogr. 138: 129–146.

    Article  Google Scholar 

  • Fischer, W., Sowa, H., & Koch, E., 2006, Orthorhombic sphere packings. I. Invariant and univariant lattice complexes. Acta Cryst. A. 62: 413–418.

    Article  MathSciNet  Google Scholar 

  • Hatch, D.M., Stokes, H.T., Dong, J., Gunter, J., Wang, H., & Lewis, J.P., 2005, Bilayer sliding mechanism for the zinc-blende to rocksalt transition in SiC. Phys. Rev. B. 71: 184109.

    Article  ADS  Google Scholar 

  • Hyde, B.G., & O’Keeffe, M., 1973, On mechanisms of the B1 ↔ B2 structural transformation. In: Phase Transitions, edited by L. E. Cross. Pergamon, Oxford, pp 345–349.

    Google Scholar 

  • Knudson, M.D., Gupta, Y.M., & Kunz, A.B., 1999, Transformation mechanism for the pressure-induced phase transition in shocked CdS. Phys. Rev. B. 59: 11704–11715.

    Article  ADS  Google Scholar 

  • Limpijumnong, S., & Lambrecht, W.R.L., 2001, Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN. Phys. Rev. Lett. 86: 91–94.

    Article  ADS  Google Scholar 

  • Miao, M.S., & Lambrecht, W.R.L., 2003, Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure. Phys. Rev. B. 68: 092103.

    Article  ADS  Google Scholar 

  • Perez-Mato, J.M., Aroyo, M., Capillas, C., Blaha, P., & Schwarz, K., 2003, Comment on Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure. Phys. Rev. Lett. 90: 49603.

    Article  ADS  Google Scholar 

  • Sharma, S.M., & Gupta, Y.M., 1998, Wurtzite-to-rocksalt structural transformation in cadmium sulphide shocked along the a axis. Phys. Rev. B 58: 5964–5971.

    Article  ADS  Google Scholar 

  • Shimojo, F., Ebbsjö, I., Kalia, R.K., Nakano, A., Rino, J.P., & Vashishta, P., 2000, Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys. Rev. Lett. 84: 3338–3341.

    Article  ADS  Google Scholar 

  • Shimojo, F., Kodiyalam, S., Ebbsjö, I., Kalia, R.K., Nakano, A., Vashishta, P., 2004, Atomistic mechanism for wurtzite-to-rocksalt structural transformation in cadmium selenide under pressure. Phys. Rev. B 70: 184111.

    Article  ADS  Google Scholar 

  • Shôji, H., 1931, Geometrische Beziehungen unter den Strukturen der Modifikationen einer Substanz. Z. Kristallogr. 77: 381–410.

    MATH  Google Scholar 

  • Sowa, H., 2000a, The NaCl to CsCl type phase transition discussed on the basis of the cP to cI deormation with the symmetry Cmcm 4(c) m2m. Acta Cryst. A 56: 288–299.

    Article  Google Scholar 

  • Sowa, H., 2000b, A transition path from the zinc-blende to the NaCl type. Z. Kristallogr. 215: 335–342.

    Article  Google Scholar 

  • Sowa, H., 2001, On the transition from the wurtzite to the NaCl type. Acta Cryst. A 57: 176–182.

    Article  Google Scholar 

  • Sowa, H., 2003, Relations between the zinc-blende and the NaCl type. Acta Cryst. A59: 266–272.

    Article  MathSciNet  Google Scholar 

  • Sowa, H., 2005a, A transition path for the pressure induced wurtzite- to NaCl-type transformation described in Pna21. Acta Cryst. A 61: 325–330.

    Article  Google Scholar 

  • Sowa, H., 2005b, Orientation relations between zincblende-, cinnabar- and NaCl-type phases of CdTe under high pressure. J. Appl. Cryst. 38: 537–543.

    Article  Google Scholar 

  • Sowa, H., 2007, Orientation relations between four phases of AgI. Z. Kristallogr. 222: 89–94.

    Article  Google Scholar 

  • Sowa, H., & Fischer, W., 2010, Orthorhombic sphere packings III. Trivariant lattice complexes of space groups with mirror symmetry. Acta Cryst. A. 66: 292–300.

    Article  MathSciNet  Google Scholar 

  • Stokes, H.T., Gunter, J., Hatch, D.M., Dong, J., Wang, H., & Lewis, J.P., 2007, Bilayer sliding mechanism for the wurtzite-to-rocksalt transition. Phys. Rev. B 76: 012102.

    Article  ADS  Google Scholar 

  • Stokes, H.T., Hatch, D.M., Dong, J., & Lewis, J.P., 2004, Mechanisms for the reconstructive phase transition between the B1 and B2 structure types in NaCl and PbS. Phys. Rev. B. 69: 174111.

    Article  ADS  Google Scholar 

  • Stokes, H.T., & Hatch, D.M., 2002, Procedure for obtaining microscopic mechanisms of reconstructive phase transitions in crystalline solids. Phys. Rev. B 65: 144114.

    Article  ADS  Google Scholar 

  • Tolbert, S.H., & Alivisatos, A.P., 1995, The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. J. Chem. Phys. 102: 4642–4656.

    Article  ADS  Google Scholar 

  • Tolédano, P., Knorr, K., Ehm, L., & Depmeier, W., 2003, Phenomenological theory of the reconstructive phase transition between the NaCl and CsCl structure types. Phys. Rev. B 67: 144106.

    Article  ADS  Google Scholar 

  • Watanabe, M, Tokonami, M., & Morimoto, N., 1977, The transition mechanism between the CsCl-type and NaCl-type structures in CsCl. Acta Cryst. A 33: 294–298.

    Article  Google Scholar 

  • Wickham, J.N., Herhold, A.B., & Alivisatos, A.P. 2000, Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals. Phys. Rev. Lett. 84: 923–926.

    Article  ADS  Google Scholar 

  • Wilson, M., Hutchinson, F., & Madden, P.A., 2002, Simulation of pressure-driven phase transitions from tetrahedral crystal structures. Phys. Rev. B 65: 094109.

    Article  ADS  Google Scholar 

  • Wilson, M., & Madden, P.A., 2002, Transformations between tetrahedrally and octahedrally coordinated crystals: the wurtzite → rocksalt and blende → rocksalt mechanisms. J. Phys.: Condens. Matter 14: 4629–4643.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidrun Sowa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Sowa, H. (2010). Phase Transitions in AB Systems. Symmetry Aspects. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_16

Download citation

Publish with us

Policies and ethics