Skip to main content

Application of Molecular Microbiological Methods to the Oil Industry to Analyse DNA, RNA and Proteins

  • Conference paper
  • First Online:

Abstract

Microorganisms have a tremendous impact on the deep biosphere. They are fundamental components of the global carbon, sulfur, nitrogen and energy cycles (Trudinger and Swaine, 1979). Microorganisms are also responsible for shaping our natural resources, for example the conversion of light to heavy petroleum reserves is a consequence of biodegredation (Head et al., 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    Article  CAS  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers.J Microbiol Methods 55:541–555

    Article  CAS  Google Scholar 

  • Bayani J, Squire JA (2004) Fluorescence in situ Hybridisation (FISH). [Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada KM (eds),] Current Protocols in Cell Biology (Chapter 22). Bethesda, Maryland

  • Dams E, Hendriks L, Van de Peer Y, Neefs JM, Smits G, Vandenbempt I, De Wachter R (1988) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16(Suppl):r87–r173

    Article  CAS  Google Scholar 

  • Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    Article  CAS  Google Scholar 

  • Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042

    Article  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  Google Scholar 

  • Gray ND, Sherry A, Larter SR, Erdmann M, Leyris J, Liengen T, Beeder J, Head IM (2009) Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13:511–519

    Article  CAS  Google Scholar 

  • Handelsman J, Liles MR, Mann DA, Riesenfeld CS, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and function of the uncultivated microbial world. In: Dorrell BWAN (ed) Functional microbial genomics. Academic Press Inc., New York

    Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  Google Scholar 

  • Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  Google Scholar 

  • Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359

    Article  CAS  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  CAS  Google Scholar 

  • Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578, Table of Contents

    Article  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  Google Scholar 

  • Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69:320–326

    Article  CAS  Google Scholar 

  • Luna GM, Stumm K, Pusceddu A, Danovaro R (2009) Archaeal diversity in deep-sea sediments estimated by means of different terminal-restriction fragment length polymorphisms (T-RFLP) protocols. Curr Microbiol 59:356–361

    Article  CAS  Google Scholar 

  • Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493

    Article  CAS  Google Scholar 

  • Morales SE, Holben WE (2009) Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis. Appl Environ Microbiol 75:2677–2683

    Article  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141

    Article  CAS  Google Scholar 

  • Ollivier B, Magot M (2005) Petroleum microbiology. ASM Press, Washington, DC

    Google Scholar 

  • Parro V, Moreno-Paz M, Gonzalez-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464

    Article  CAS  Google Scholar 

  • Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol 14:296–302

    Article  CAS  Google Scholar 

  • Schonmann S, Loy A, Wimmersberger C, Sobek J, Aquino C, Vandamme P, Frey B, Rehrauer H, Eberl L (2009) 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia. Environ Microbiol 11:779–800

    Article  CAS  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  CAS  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  CAS  Google Scholar 

  • Trudinger PA, Swaine DJ (1979) Biogeochemical cycling of mineral-forming elements. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Caffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this paper

Cite this paper

Caffrey, S.M. (2010). Application of Molecular Microbiological Methods to the Oil Industry to Analyse DNA, RNA and Proteins. In: Whitby, C., Skovhus, T. (eds) Applied Microbiology and Molecular Biology in Oilfield Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9252-6_3

Download citation

Publish with us

Policies and ethics