Skip to main content

How Specific Microbial Communities Benefit the Oil Industry: Anaerobic Microbial Processes and the Prospect for Methane Production from Oil

  • Conference paper
  • First Online:
Applied Microbiology and Molecular Biology in Oilfield Systems

Abstract

In strict anaerobic environments, oxygen is essentially non-existent. However, anaerobic microorganisms may thrive in such environments by metabolising organic or inorganic energy and/or carbon sources while respiring alternate electron acceptors such as nitrate, metals, or sulphate. Methanogenesis is the key electron accepting process in environments characterised by the absence of any electron acceptors other than CO2. Geological evidence has shown that most of the Earth’s petroleum resources have been biodegraded over millennia, the extents to which likely depended on nutrient and water availability, temperature, and the requisite microorganisms (Röling et al., 2003; Head et al., 2003; Hallmann et al., 2008). Gases of biological origin including methane are believed to be primary byproducts of microbial oil metabolism in petroliferous deposits where oil quality has diminished due to the preferential consumption of valuable ‘light’ hydrocarbons (Head et al., 2003; Milkov and Dzou, 2007; Jones et al., 2008). While this phenomenon has enormous economic implications for recovering high-value light oil, it also sets the precedent for a potential alternate energy recovery strategy – that is, recovering energy as methane gas that is biologically produced as the result of methanogenic oil biodegradation in petroleum reservoirs that are at their economic limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 341:291–294

    Article  Google Scholar 

  • Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404:722–723

    Article  CAS  Google Scholar 

  • Beller HR (2000) Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegrad 11:125–139

    Article  CAS  Google Scholar 

  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Suflita JM, Green Tringe S, Bristow J (2009) Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43:7977–7984

    Google Scholar 

  • Edwards EA, Grbic’-Galic’ D (1994) Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl Environ Microbiol 60:313–322

    CAS  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    Article  CAS  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    Article  CAS  Google Scholar 

  • Gieg LM, Suflita JM (2005) Metabolic indicators of anaerobic hydrocarbon biodegradation in petroleum-laden environments. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 337–356

    Google Scholar 

  • Gray ND, Sherry A, Larter SR, Erdmann M, Leyris J, Liengen T, Breeder J, Head IA (2009) Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13:511–519

    Article  CAS  Google Scholar 

  • Grbic’-Galic’ D, Vogel T (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    Google Scholar 

  • Hallmann C, Schwark L, Grice K (2008) Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nat Geosci 1:588–591

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  Google Scholar 

  • Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194

    Article  CAS  Google Scholar 

  • Jack TR, Lee E, Mueller J (1985) Anaerobic gas production from crude oil. In: Zajic JE, Donaldson EC (eds) Microbes and oil recovery: international bioresources journal, vol. 1. Bioresources Publications, El Paso, TX, pp 167–180

    Google Scholar 

  • Jones DM, Head IA, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  Google Scholar 

  • Kuznetsov SI (1950) Possibilities of production of methane in oil fields of Saratov and Buguruslan. Mikrobiol 19:193–202

    CAS  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 21–33

    Google Scholar 

  • McInerney MJ (1999) Anaerobic metabolism and its regulation. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, vol 11a, 2nd edn. Wiley-VCH, Weinheim, pp 455–478

    Google Scholar 

  • Milkov AV, Dzou L (2007) Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oils in a deep hot reservoir. Geology 35:455–458

    Article  CAS  Google Scholar 

  • Muller FM (1957) On methane fermentation of higher alkanes. Anton Van Leeuwen 23:369–384

    Article  CAS  Google Scholar 

  • Nazina TN, Shestakova NM, Grigoryan AA, Mikhailova EM, Tourova TP, Poltaraus AB, Feng C, Ni F, Belyaev SS (2006) Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China). Microbiology 75:55–65

    Article  CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  Google Scholar 

  • Parkes J (1999) Cracking anaerobic bacteria. Nature 401:217–218

    Article  CAS  Google Scholar 

  • Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF, Delong EF, Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11:176–187

    Article  CAS  Google Scholar 

  • Röling WFM, Head IA, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154:321–328

    Article  Google Scholar 

  • Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40:5459–5464

    Article  CAS  Google Scholar 

  • Suflita JM, Davidova IA, Gieg LM, Nanny M, Prince RC (2004) Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Petroleum biotechnology. Developments and perspectives, vol 151. Elsevier Science, Amsterdam, pp 283–305

    Chapter  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37:5213–5218

    Article  CAS  Google Scholar 

  • Widdel F, Boetius A, Rabus R (2006) Anaerobic biodegradation of hydrocarbons including methane. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Ecophysiology and biochemistry, vol 2. Springer, New York, pp 1028–1049

    Chapter  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Gieg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this paper

Cite this paper

Gieg, L. (2010). How Specific Microbial Communities Benefit the Oil Industry: Anaerobic Microbial Processes and the Prospect for Methane Production from Oil. In: Whitby, C., Skovhus, T. (eds) Applied Microbiology and Molecular Biology in Oilfield Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9252-6_22

Download citation

Publish with us

Policies and ethics