Skip to main content

Physical-Chemical Properties of Ozone – Natural Production of Ozone: The Toxicology of Ozone

  • Chapter
  • First Online:
OZONE

Abstract

As I already mentioned, ozone (from the Greek means to give off a smell) is a natural but unstable molecule. The pure gas has a soft sky-blue colour with a pungent, acrid smell. The molecule is composed of three oxygen atoms (O3) and, the molecular weight, in comparison to the oxygen diatomic molecule (32.00) is of 48.00. Ozone has a cyclical structure with a distance among oxygen atoms of 1.26 Å and exists in several mesomeric states in dynamic equilibrium. For the physician it is useful to know that the solubility (ml) in 100 ml water (at 0°C) of either ozone or oxygen is either 49.0 ml or 4.89 (ten fold lower), respectively. Consequently the great solubility of ozone in water allows its immediate reaction with any soluble compounds and biomolecules present in biological fluids. Either traces of oxygen polymers (O4) or ozone polymers (O6 and O9) can be generated but the idea that superactive ozone polymers/clusters may have a therapeutic role remains speculative (Cacace et al., 2001; Murai et al., 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aris, R. M., Christian, D., Hearne, P. Q., Kerr, K., Finkbeiner, W. E., and Balmes, J. R., 1993, Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy, Am. Rev. Respir. Dis. 148:1363–1372.

    Article  CAS  Google Scholar 

  • Babior, B. M., Takeuchi, C., Ruedi, J., Gutierrez, A., and Wentworth, P., Jr., 2003, Investigating antibody-catalyzed ozone generation by human neutrophils, Proc. Natl. Acad. Sci. USA 100:3031–3034.

    Article  CAS  Google Scholar 

  • Broeckaert, F., Arsalane, K., Hermans, C., Bergamaschi, E., Brustolin, A., Mutti, A., and Bernard, A., 1999, Lung epithelial damage at low concentrations of ambient ozone, Lancet 353:900–901.

    Article  CAS  Google Scholar 

  • Cacace, F., De Petris, G., and Troiani, A., 2001, Experimental detection of tetraoxygen, Angew. Chem. Int. Ed. Engl. 40:4062–4065.

    Article  CAS  Google Scholar 

  • Devlin, R. B., McDonnell, W. F., Mann, R., Becker, S., House, D. E., Schreinemachers, D., and Koren, H. S., 1991, Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung, Am. J. Respir. Cell Mol. Biol. 4:72–81.

    Article  CAS  Google Scholar 

  • Jerrett, M., Burnett, R. T., Pope, C. A. et al., 2009, Long-term ozone exposure and mortality, N. Engl. J. Med. 360:1085–1095.

    Article  CAS  Google Scholar 

  • Molina, M. J., and Rowland, F. S., 1974, Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone, Nature 249:810–814.

    Article  CAS  Google Scholar 

  • Moncada, S., 1992, Nitric oxide gas: mediator, modulator, and pathophysiologic entity, J. Lab. Clin. Med. 120:187–191.

    CAS  PubMed  Google Scholar 

  • Murai, A., Nakajima, T., and Tahara, N., 2003, Verification of ozone clusters (O6 & O9), Ozone Sci. Eng. 25:211–221.

    Article  CAS  Google Scholar 

  • Nakao, A., Sugimoto, R., Billiar, T. R., and McCurry, K. R., 2009a, Therapeutic antioxidant medical gas, J. Clin. Biochem. Nutr. 44:1–13.

    Article  CAS  Google Scholar 

  • Nakao, A., Faleo, G., Nalesnik, M. A. et al., 2009b, Low-dose carbon monoxide inhibits progressive chronic allograft nephropathy and restores renal allograft function, Am. J. Physiol. Renal Physiol. 297:F19–F26.

    Article  CAS  Google Scholar 

  • Nieva, J., and Wentworth, P., Jr., 2004, The antibody-catalyzed water oxidation pathway – a new chemical arm to immune defense? Trends Biochem. Sci. 29:274–278.

    Article  CAS  Google Scholar 

  • Pannen, B. H. J., Köhler, N., Hole, B., Bauer, M., Clemens, M. G., and Geiger, K. K., 1998, Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats, J. Clin. Invest. 102:1220–1228.

    Article  CAS  Google Scholar 

  • Schrope, M., 2000, Successes in fight to save ozone layer could close holes by 2050, Nature 408:627.

    Article  CAS  Google Scholar 

  • Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., and Snyder, S. H., 1993, Carbon monoxide: a putative neural messenger, Science 259:381–384.

    Article  CAS  Google Scholar 

  • Bocci, V., 2006b, Is it true that ozone is always toxic? The end of the dogma, Toxicol. Appl. Pharmacol. 216:493–504.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velio Bocci .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bocci, V. (2010). Physical-Chemical Properties of Ozone – Natural Production of Ozone: The Toxicology of Ozone. In: OZONE. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9234-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9234-2_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9233-5

  • Online ISBN: 978-90-481-9234-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics